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The problem. Let F be an analytic plane set of (Hausdorff) dimen-
sion 8. The following two theorems were proved by Marstrand [6].

I. If 8 > 1, then E projects into a (linear) set of positive Lebesgue meas-
ure in almost all directions.

I'. If 8< 1, then E projects into a set of dimension 8 in almost all
directions.

It would be agreeable if such results could be extended to arbitrary
plane sets. We show in this paper, by means of two counter-examples
constructed using the continuum hypothesis, that they cannot be extended
even to arbitrary A°-measurable sets. The proofs owe a great deal to
discussions with J. M. Marstrand.

Marstrand’s theorems have recently been generalized to higher
dimensions by Mattila [9], and no doubt the same could be done for
our counter-examples.

Essentially s-dimensional sets. A continuous increasing function
¢: [0, 00) > [0, o©) is a measure function if ¢(0) = 0 and ¢(z) > 0 when
x> 0. We define the Hausdorff measure A?(E) for any plane set F as
lim A3 (E), where Af(F) is the infimum of ) ¢(dE,) for all possible cov-

804 n
erings of £ by a sequence (H,) of sets of diameters dE, < é. When

p(x) = a°, 8 > 0, one writes A° for A% and simply 4 when 8 = 1. The
(Hausdorff) dimension of E is the unique number 8, such that A°(E) = 0
for every s > s, and A°(H) = oo for every s < 8,. We shall call a set
essentially at least s-dimensional if it cannot be expressed as the union
of countably many sets each of dimension less than 8. For obvious reasons
we omit the words “at least” for plane sets when 8 = 2, and for linear
sets when 8 = 1. We need the following two lemmas, the first of which
is trivial.
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LEMMA 1. If there exists a measure fumction @ such that A®(E) > 0
and ¢(®) = o(a*) a8 2 — 0 for each t <8, then E 18 essentially at least
s-dimensional.

LEMMA 2. The continuum hypothesis implies that every essentially al
least s-dimensional set E has an essentially at least s-dimensional subset
E, which i3 A'-measurable for every value of t< s.

Proof. We apply the standard method used by Besicovitch [1] in
constructing a “rarefied” set. List all G,-sets of dimension less than s as
K, 0<a< w;. For 0 < a< w, define ¢, as any point of F not in the
set | J{K;: 0< B < a}; such a point exists, since the union is countable
and, therefore, represents a set not essentially at least s-dimensional.
We assert that the set B, = {¢,: 0 < a < w,} has the desired properties.

First, if H', H?, ...is any sequence of sets each of dimension less
than 8, we can include H* in a G,-set K* of the same dimension, and K* is
listed a8, say, K,y, where 0 < a(¢) < w;. The ordinals a(¢) have an upper
bound a < w, and the point ¢, is in the set H, U H* which is, therefore,

non-empty. Hence F, is essentially at least s-dlmensmna.l

Second, as pointed out by Besicoviteh [1], for a set E, to be 4*-meas-
urable it is necessary and sufficient that, for every G,-set K of finite
A'-meagure,

(1) A'(E) = 4/(EnB,)+ A (E—B,).

But if ¢ < s, then any such set K is listed as, say, K,, and KnH,
is a part of the countable set {gs: 0 < f < a}. Hence (1) holds, and thus
B, is A'-measurable.

LeMMA 2°. If, in addition, B is A°*-non-o-finite, we may arrange thai
E, is also A°-measurable.

Proof. Additionally incorporate in the list of K ’s all G;-sets of finite
A°-measure, and then proceed as before.

Dimension and linear sections. Let F be a plane set.

LEMMA 3. If INE 18 essentially one-dimensional for all vertical lines 1
through the points of some set J on the x-awis of positive linear measure,
then E s essentially two-dimensional.

Proof. Let (X,) be any sequence of sets each of dimension less than 2,
and let Y, denote the set of points # on the z-axis such that the vertical
line I(x) through « meets X, in a set of dimension one. By Marstrand’s
theorem [7], the set ¥, is of measure zero. Hence there exists a point
ved — U Y,, and now I(z)n|( U X,) i8 not essentially one-dimensional.

Hence U X, cannot contain E.



HAUSDORFF DIMENSIONS 55

CoROLLARY. The result still holds if we replace vertical lines through
the points of a set of positive measure on the z-axis by lines touching the
oircle 2*+y* = 1 at a set of positive measure. The same applies to Lemma 3*
below.

Proof. This follows from the fact that, in a sufficiently small neigh-
bourhood of any point outside the circle, the new situation can sufficiently
smoothly be deformed into the old one.

LemMA 3*. If INE is uncountable for all vertical lines 1 through the
points of some set J on the x-awis of positive linear measure, then EH is
A-non-go-finite.

Proof. This can be deduced in an obvious way from the fact that
if A(X) is finite, then I(z) N X is countable for almost all # € R'. In proving
the latter we may suppose that X is compact, since

Xc(UEK,)vz,

where each K, is compact with A(K,) < co and A(Z) = 0. The result
now follows from the observation that if A < R!' and K = R? are compact
and for each z € A the set I(z)n K contains % points in, for example, the
respective strips 2i1—-1<y<2¢ (¢=1, ..., k), then K contains &k disjoint
compact sets the projection of each of which on the #-axis contains A4,
and hence A(K) > kA(A).

Two anomalous linear sets. The next two results are related to the
problems of Marczewski [4], [5] discussed in [2], which contains Lemma 4*
for linear transformations; the proof of Lemma 4 is similar to an argu-
ment in [8] and was suggested by Marstrand. (He pointed out the in-
adequacy of my original version of Lemma 4, proved, using Theorem 6 of
Eggleston [3], only for linear transformations.) A non-degenerate bilinear
transformation is of the form

t: @ ~~> (av+b)/(cx+d), where ad—bo # 0,

and may be regarded as either from the projective real line onto itself
or from R—{—d/c} into R; in the latter case ¢{(X) means t(¥ —{d/c}).
LeEMMA 4. There exists a linear set M of linear measure zero suoh that
for every sequence (t,) of mon-degenerate bilinear iramsformations the set
00
() (M) i8 essentially one-dimensional.
n=l
Proof. As is known, there exists a compact linear set 4 of linear
measure zero but essentially one-dimensional. We may and shall identify
the points of the projective real line (regarded as the x-axis together
with a point at infinity) with their images on the circle 0: #*+4(y —1)% =1
under projection from the point (0, 2); this preserves compactness, measure
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zero, and essential one-dimensionality. The non-degenerate bilinear
transformations are now regarded as acting on C, and form a locally
compact separable topological transformation group G such that if g € G,
then, given &> 0, there is a neighbourhood N of g with A(NA4)<e.

Let {g,, g3, -..} be a countable dense subset of @, and for each ¢ choose
a neighbourhood N, of g, such that A(N;4) < 2%, We show that the set

M = limsup N, A
{00

has the asserted properties.
Evidently, A(M) = 0. For any sequence (f,) of elements of G,
the set
o 00 o
ﬂ n U ty " ]
Ne=lim]j=i
is a countable intersection of dense open subsets of @&, and hence is non-
-empty; let # be an element of it. Then

o] oo o0 00

vd = NN UN4) =Nt,M
n=1 fml =i Nnm==1

and, consequently, the set on the right-hand side is essentially one-dimen-

sional.

LEMMA 4*. There exists a linear set M* of dimension zero such that
for any sequence (t,) of mnon-degenerate bilinear transformations the set
N t,(M*) i8 uncountable.
new=l

Proof. We may take

M* = limsup F,,,
n-»00
where F, consists of closed intervals of length n~%" equally spaced out
along the whole of R' in such a way that there are » of them in I = [0, 1],
including [0, n~%"]. One easily verifies that A}*[F,NI]<n~? and that
M* is co-meagre (residual).

Two anomalous plane sets. We write P? for R* together with a point
at infinity in every direction. If p € P and F < R’ then p(F) denotes
the union of all lines (in R?) joining p to points of B — {p}; or, if p is
at infinity, then p(F) denotes the union of all lines through points of
in the direction of p. In the sequel we shall not have to distinguish points at
infinity and ordinary points. We say that the projection of E from p
18 of linear measure zero if this is true of the intersection of p(F) with
some (and therefore any) line not through p; similarly we may speak
of the projection being of dimension zero.
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THEOREM 1. Under the continuum hypothesis, there exists an essentially
two-dimensional plane set B whose projection from every point of P? isof
linear measure zero.

Proof. We may list all points of P? a8 p,, 0 < a < w,, and all lines
touching the circle 2?+y? =1 as 1, 0 < a < w,, in such a way that I,
avoids both p, and (if a > 0) some point p, with # < a. Let M, be a con-
gruent copy on I, of the set M of Lemma 4, and define M, for 0 < a < w,
by transfinite induction by taking M, =1,n(M\ps(M,), where g runs
over all ordinals less than a for which p, ¢ ,. We show that the set
E=XM,
has the asserted properties. a

In order to prove that Z is essentially two-dimensional, we first
note that each set M, is essentially one-dimensional. Indeed, it is easy
to see using transfinite induction that it is congruent to a set of the form
(t. (M), where (f,) is a sequence of non-degenerate bilinear transformations

n
depending on a. We then apply the Corollary to Lemma 3.

Any point of P? is listed as, say, p,. Now for each a the set M, is
of (linear) measure zero (being part of a copy of M). Hence the set

l,Nnp, ( U M,) is the union of countably many sets of measure zero, and
a<ly
8o is itself of measure zero. If a > y and p, ¢1,, we have M, < p (M)

by the definition of M, and, therefore, I,Np,(M,) = M, ; moreover, p, is
on I, for at most two values of a. Hence I,np, (F) is contained in the set
Lnp,( LJM,,)UM,,
a<y
together with at most two additional points, and is of measure zero.
Therefore, the projection of ¥ from p, is of measure zero. This completes
the proof.

Remark. By applying Lemma 2 we can obtain a subset of ¥ which
has the same properties and which is, in addition, A‘-measurable for every
positive value of #.

THEOREM 1*. Under the continuwm hypothesis, there exists a A-nom-o-
-finite plane set E* whose projection from every point of P* is of dimension
zero; and E* may be supposed A'-measurable for every positive value of t.

The proof is as for Theorem 1, but based on the set M* of Lemma 4*
instead of on M, and applying the starred lemmas.

REFERENOES

[1] A. 8. Besicovitch, Ooncentrated and rarefied sets of points, Acta Mathematica
62 (1933), p. 289-300.

[2] R.O.Davies, J. M. Marstrand and S. J. Taylor, On the intersections of trans-
Jorms of linear sets, Colloquium Mathematicum 7 (1960), p. 237-243.



58

R. O. DAVIES

(31
[4]
(6]
(6]

[7]
(8]
(el

H. G. Eggleston, Sets of fractional dimensions which ocour én some problems
of number theory, Proceedings of the London Mathematical Society (2) 64 (1952),
p. 42-93.

E. Marczewski, P 125, Colloquium Mathematicum 3 (1954), p. 75.

— On translations of sets and on a certain theorem of Steinhaus, Prace Matema-
tyozne 1 (1955), p. 256-263 [in Polish].

J. M. Marstrand, Some fundamental geometrical properties of plane sets of frac-
tional dimensions, Proceedings of the London Mathematical Society (3) 4 (1954),
p. 257-302.

— The dimension of Cartesian product sets, Proceedings of the Cambridge Philo-
sophical Society 50 (1954), p. 198-202.

— An application of topological transformation groups to the Kakeya problem,
Bulletin of the London Mathematical Society 4 (1972), p. 191-195.

P. Mattila, Hausdorff dimension, orthogonal projections and intersections with
planés, Annales Academiae Scientiarum Fennicae, Series A I, Mathematica
1 (1975), p. 227-244.

Regu par la Rédaction le 31. 12. 1977;
en version modifide le 12. 6. 1978



