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1. In [3] J. Plonka investigated the smallest class of algebras which
contains a given equational class and is defined by regular equations.
Especially he considered the connection between such a class and the
formation of sums of direct systems of algebras defined in [2] under
the assumption that all algebras have no nullary fundamental opera-
tions. '

In this note we shall give a complete description of such a closure
defined by regular equations for arbitrary classes of algebras and without
any assumption on the fundamental operations (Theorem 1). This will
lead to a characterization of the corresponding closure operator using
the notion of the sum of a direct system in the case that no nullary fun-
damental operations occur (Theorem 2).

2. All algebyras under consideration are of finitary type 4 = (%;)ier
and we write A (A4) for the class of all algebras of type 4, where an algebra
of type 4 is a pair 4 = (A, ( f,),ET), f; being an m,-ary operation on the
carrier set A for each teT.

An equation p = ¢q (p and ¢ can be considered as elements of the
free algebra in A(4) generated by a set {z;|ie N} of ‘“variables’’) is called
regular if p contains the same variables as g¢.

If A = A(4), we write Eq(A) for the set of all equations and Eq™¢(AN)
for the set of all regular equations which are valid in each algebra in .
For a set G of equations Md (@) is the class consisting of all algebras in
A(4) in which every equation of G is valid.

It is clear that MAEq () is the smallest class in 0 (4) which contains A
and is definable by equations and that MAEq™ () is the smallest class
in Y(A4) which contains U and is definable by regular equations (MdEq
and MdEq™® are closure operators on A(A4)).

By a well known theorem of G. Birkhoff, MAEq (%) is equal to # 2 (N),
where o, &, and £ are the operators defined by forming all homomorphic
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images, all subalgebras, and all products of a given class of algebras (),
The purpose of this paper is to state an analogous result for MdEq™®.

3. For A = (A, (f;);.r) we define the one-point extension A= (A y (fdeer)
of A by

A:=AU{0} (disjoint union),
. fi(ayy .oy ay)  if ay, ..., a0, €4,

Wiy ooy @, ) =
fi(ay, ’ "t) 0 otherwise.

For A = A(4) let é.’(‘lI) be the class {AlAe €A}
Now we can prove the following

LEMMA 1. Let A be a non-empty algebra in A(A). Then Eq™E(A) =
= Eq(A4).

Proof. Let p(xy,...,2%y,) = ¢(%y, ..., Tp)e Eq®(A). Then for all
Ay ...y GpeA we have p(ay,...,a,) =q(a,,...,a,). For a,,...,a,€c4,
where at least one a; is equal to 0, we get p(a,, ..., a,) = 0 = q(a,, ..., a,).

Therefore p = qe Eq(A). Now let p(xyy...y2,) = q(Y15---yYm) be an
equation which is not regular. So assume without loss of generality
14 {Y1, -y Ym}- Choosing an arbitrary aed we get p(0,a,...,a) =0,

g(a, ..., a)ed and, therefore, it follows p = q¢ Eq(A). Since Eq(zi) =
c Eq(A), the proof is completed.
~ COROLLARY 1. If A = A(A) and 1 is the one-element algebra in A(A4),
then Eq™(A) = Bq(&(Au{1})).

Proof. We have

Eq™ (") = N Eq™E(A) = [ Eq™¥(4)NEq™*(1)

423
=N Eq(4)nEq(1) = Anqu(AmEq(i) = Eq(6(Au{1})).
A#9D

As a simple consequence of this corollary we get

THEOREM 1. Let A < A(4). Then MAEQ™® () = #FPE(AU{L}).

Proof. MAEq™ () = MAEq(€(AU{L})) = #FPEAU{L)).

From this theorem there follows a simple criterion to decide whether
an equational class can be defined by regular equations:

COROLLARY 2 (2). For an equational class A < A(A4) the following
conditions are equivalent:

(1) For this result and other details not proved in this note see [1].
(2) It has been communiocated to me that this result is due to B. J6nsson and
E. Nelson.
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(i) A can be defined by regular equations.

(ii) &(A) < A.

Proof. (i) is equivalent to MAEq™®(A) = A, and because of LeA
we have MAEQ™ (%) = #FPE(A). But from #FSPE(A) < A it follows
£(N) < A, and from &(A) < A it follows HFFPEA) = FFPIN) = .

4. In the sequel all algebras are of type A4 = (ng);p wWith n, = 0
for all teT.

First we repeat the definition of a direct system of algebras and
its sum (see {2]):

Let (I, <) be a partially ordered set with the property that for
any two elements ¢, je I there is the least upper bound lu.b.(?,j)
of ¢ and j.

A direct system of algebras from A(4) over the set (I, <) is a pair
((A)iery (4)izy), Where A;e A(4) for all ieI and y,;: A,—~A; are homo-
morphisms for all 4, je I with ¢ <j such that

(a) py = id4, for all eI,

(b) ypowy = wy for all 4,5, keI with ¢ <j<k. _

The sum of the direct system is an algebra S = (S, (s,),,T), where
S = L_% ‘Ai (diSjOiIlt union) a:nd 8:(0/1, ceey a.n‘) =f‘(1p‘l‘°(a1), ooy "/),tnt‘o(arm)),

i€
where a;e 4, for 1 <j<m and i, = Lu.b.(y, ..., 4,).

We write (%) for the class of all sums of direct systems of algebras
from 9A.

LEMMA 2. Let A < N(A4). Then
(i) 26 A) < S22 (N),

(ii) L2(A) = F2&(N).

Proof. (i) Let (A,);.; be a family of algebras from A. We consider
”A’i a:nd fOI' J S I the SetS .BJ = {(a‘i)‘iGIl a'- = 01' fOI‘ 'iGJ’ a,iGAi fOl‘ 'i"J}.
el
It is easy to see that

XA:'= UBJ

iel JeI

and that B, defines a subalgebra B, of [] A, which is isomorphic to
tel
[] A;. Now realize that (PI, <) is a partially ordered set with the L.u.b.-
1eIN\NJ
property ‘and that (( [1 A)sesrs (®r5)ae J,) is a direct system over PBI,
ieIN\J

where =x;; is the natural projection from [[ A; to [] A; whenever
teINT teINJ’

J < J’. Then it is easy to check that the sum of this direct system is
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isomorphic to [] A,, where the isomorphism is induced by the bijection
tel

from | J B, to X A4;.

Jel tel
(i1) Let ( Yiers (¥i) z<,) be a direct system of algebras from U and

let S be its sum. l\ow consider for each ke I the subalgebra B, of [] A,,
tel
where B, = {(a;);c1| a; = yi(ag) for k <14 and a,eA,, a; = O; otherwise}.
Then B, ~ A, and these isomorphisms induce an obvious isomorphism
between the subalgebra U of [[ A; with U = (J B, and S. From this

it follows Se 2 (A). vel kel

COROLLARY 3. LF«P(U) is a quasi-primitive class of algebras for
any U < A(4).

Proof. We have to show that L¥«Z(A) is closed with respect to
the operators & and #. First, S SFaP (W) € SFL«P(N) is a trivial state-
ment. Now we consider ZFL«2(A). This class is contamed in YJ.S%@(‘H)
and from Lemma, 2, (ii), it follows S2L«P(A) < .5".%9’?(5’?(91) c SPEP (A).
By (i) of Lemma 2 we get SP2EP (W) c SSL«PP (W) < SS«P? (W), which
completes the proof.

Finally, we characterize the operator MAEq™® for classes of algebras
without nullary fundamental operations by

THEOREM 2. Let A < A(4). Then
MAEQ™8 () = #FFa? (N).

Proof. By Lemma 2, (i), we have S22 () < ¥P&?(A) and, there-
fore, XSS uP (W) = .%Sfﬁ’é@(%[). Since a class defined by regular equa-
tions is closed with rebpect to the operators 5, &, (it is an equational
class) and the operator & (Lemma 1), 9?’9’96’9’(91) < MdEq™® (%), which
proves the inclusion #FFL2P(A) = MAEq ™ (N).

From Lemma 2, (i), it follows that 2&(Au{l}) = FaP (AU {1})
— %2? (), and by Theorem 1 we obtain MAEG™E () = #FPE(AUL})
c S S2P(N), which completes the proof of the theorem.

Remark. Note that Theorem 2 is proved without using the result
(see [2]) that a class defined by regular equations is closed under formation
of sums of direct systems, but using only the corresponding property
of one-point extensions which are special cases of sums of direct systems.
From this point of view Theorem 1 really shows that these special sums
of direct systems are sufficient for characterizing the closure operator
MdEq™® while the connections between the formation of sums of general
direct systems and one-point extensions are described in Lemma 2.
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