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ON SOME PROPERTIES OF ERDOS SETS

BY

MAREK KUCZMA (KATOWICE)

1. With every Hamel basis H of the space RY we can associate the set
H* of all finite combinations of elements of H with integral coefficients. The
set H* will be referred to as the Erdds set associated with H, since Erdds [2]
first considered such sets in the one-dimensional case (N = 1).

Let D' R¥ be an open and convex set. A function f: D — R is called
convex whenever the relation

x4y _J+/0)
(3) <75

holds for all x, yeD. A function f: RY - R is called additive whenever the
relation

(1 Sx+y)=f(x)+f ()

holds for all x, ye RN,

In the sequel we will need the following definitions (cf. [4] and [7]).

A set T < R belongs to the class s/ whenever if D = R" is an open and
convex set such that T< D and f: D — R is a convex function bounded
from above on T, then f is continuous.

A set T < R" belongs to the class # whenever every additive function
f: R - R bounded from above on T is continuous.

A set T = RN belongs to the class </, whenever if D = R" is an open and
convex set such that T < D and f: D — R is a convex function such that the
restriction f|T is continuous, then f is continuous in D.

A set T < RN belongs to the class 8, whenever every additive function
f: R¥ - R, such that the restriction f|T is continuous, is continuous in R".

M. E. Kuczma [14] proved that

(2) oA =R

whereas for classes &/, and 4, we have only the inclusion &/, < 4, (cf. [7]).
We have also the inclusion (cf. [7]) & < .
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A set A < R" is called saturated non-measurable (cf. [5]) if «
(3) m,' (A) = m‘(RN\A) = 0,

where m; stands for the N-dimensional inner Lebesgue measure. The N-
dimensional outer Lebesgue measure will be denoted by m,.

It follows directly from (3) that if 4 = R" is a saturated non-measurable
set and E < RV is a Lebesgue measurable set of positive measure, then
AnE #Q.

In establishing that a set is saturated non-measurable, the following
Smital’s lemma (cf. [13], [11]) is often helpful:

Liemma 1. Let B, D = R be such that m,(B) > 0 and D is dense in R". If

A=B+D =" xeR"|x=b+d, beB,deD)},

then m, (RN A) = 0.
In the sequel the dimension N of the underlying space is regarded as
fixed.

2. In [9] we proved that, in the one-dimensional case (N = 1), if H = R
is an arbitrary Hamel basis and I < R is an arbitrary interval, then
INnH*e.s/. Now we are going to extend this result to arbitrary N.

THueoreM 1. If H = RY is an arbitrary Hamel basis and A < R® is an
arbitrary set with non-empty interior, then

4) AnH*e «.
Proof. First we assume that
(5) Oeint A.

Since H spans RN over the rationals, it also spans R" over the reals and,
consequently, it contains a basis |b,, ..., by} of RY over R:

6 beHc H* i=1,...,N.
Every xeR" can be uniquely represented as
(7) x=11b1+ ves .+l~b~

with real 4,, ..., Ay.
Let f: R" > R be an additive function and assume that f is discon-
tinuous. Put

(8) @, (A)=f(@Ab), i=1,...,N; AeR.
For x of the form (7), by (1) we have
F(X)=0,(A)+ ... +on(4n).
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If every function ¢;: R— R, i =1, ..., N, were continuous, f would also be
continuous. Consequently, there exists an i, such that ¢, is discontinuous.
In the sequel we suppress the index ip and write ¢ instead of ¢;, and b
instead of b;,. Note that according to (8) and (1) the function ¢: R— R is
additive.

Since ¢ is discontinuous, there exists a 4, such that ¢(4,) # 4o @ (1), say

(9) (p(lo) = Ao (P(1)+C, - c#0.

It follows from (9) and from the rational homogeneity of every additive
function (cf. [1]) that A, is an irrational number.
The element iob of RY has a representation

)'Ob =t hl+ +”mhm’

where h,, ..., h,e H and u,, ..., u, are rational. Consequently, there exists a
positive integer k such that all the numbers ky,, ..., ku,, are integers, whence

(10) kiobe H*.
Let Z denote the set of integers, and N the set of positive integers. The set
D=acR|a=p+qkio, p,qeZ]

is dense in R. Moreover, for every aeD, a = p+qkly, by (6) and (10) we

have
ab = pb+qkiobe H*.

We may choose a sequence a,] of points of D such that

(11) a, #0 for neN,
(12) lim a, = 0.
Moreover, we have w

(13) x,be H* for neN.

Let a, = p,+q,kdo, neN. It follows from (11) and (12) that the sequence |q,,)
is unbounded. Replacing, if necessary, the sequence {a,] by a suitable
subsequence, and «, by —a, (which does not spoil conditions (12) and (13))
we may assume that

(14) lim ckq, = .
Now, according to (9) we have
S (@ab) = @(a,) = @(Py+qukio) = ¢(p)+ @ (gakAo)
= pa@(1)+4a k@ (ho) = p@(1)+ g, k(Ao (1) +c)
= (1) [pa+4qnkio) +q,kc = a, @ (1) +ckq,,
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whence by (12) and (14) we obtain

(15) lim f(a,b) = .

According to (5) and (12) we h”ave a,be A for large n, whence by (13) we get
a,be AnH* for n> n,.

Consequently, relation (15) shows that f cannot be bounded on A~ H*. Thus
AnH*e #A. Hence, by (2), we obtain (4).

Before proceeding further with the proof let us note the following

Lemma 2. If H <= RY is an arbitrary Hamel basis, then the set H* is dense
in RN,

To see this let {b,, ..., by} = H be a basis of RY over R. The argument
above (where 1, may be an arbitrary irrational number) shows that the set
H* is dense on every line Rb;, i =1, ..., N. Hence it follows easily, since the
sum of elements of H* is again in H*, that H* is dense in R".

Now we complete the proof of Theorem 1. Let us drop assumption (5).
By Lemma 2 there exists an he H*nint A. For the set 4A—h we have
Oeint (A —h), whence, by what has already been proved, (A—h)nH*e <.
Hence it follows (cf. [10]) that

[(A—h)AH*]+he .

But [(A—h)nH*]+h=[(A—h)+h]n[H*+h] = AnH*, and (4) holds.
Hence, taking 4 = R¥ we obtain
CoRrOLLARY 1. If H < RY is an arbitrary Hamel basis, then H* € .</.
In the one-dimensional case this result was first established by Ger [3].
As a consequence of Theorem 1 we have also the following
TueoreM 2. If H = RY is an arbitrary Hamel basis and A = RY is an
arbitrary set with non-empty interior, then

(16) AnH*esl,.

Proof. Let D = RY be an arbitrary open and convex set such that
ANnH* <D and let f: D— R be an arbitrary convex function such that
the restriction f|AnH* is continuous. By Lemma 1 there exists an
he(int A)nH*. Since f|ANH* is continuous at h, there exists a neigh-
bourhood U of h such that f|4AnH* is bounded on UnAn H*. Clearly, we
have int (U " A) # @, whence, by Theorem 1, Un A4 H* e «/. Consequently,
the function f, being — in particular — bounded from above on Un AN H*,
is continuous. Hence we obtain (16).

COROLLARY 2. If H< R" is an arbitrary Hamel basis, then H* € </ ..

3. In the one-dimensional case (N = 1) Erd6s proved [2] that for every
Hamel basis H the associated set H* is saturated non-measurable. This is



ERDOS SETS 131

true for arbitrary N and to prove this we use essentially the same argument
as in [2].

THeoreM 3. If H < RY is an arbitrary Hamel basis, then the set H* is
saturated non-measurable.

Proof. Clearly, we have

whence

(17) m,(H*) > 0.
On the other hand, we have

(18) H* = H* + H*,

whence, by Lemmas 1 and 2, m;(R"\H*) = 0.

Finally, if we had m;(H*) > 0, then relation (18), in view of the theorem
of Steinhaus (e.g., [6], [15], and [16]), would imply that int H* # @, which is
impossible. Consequently,

(19) m;(H*) = 0,

and the theorem holds.
We will also prove the following

LemMma 3. If H < R" is an arbitrary Hamel basis and f: RN > R is an
arbitrary discontinuous additive function, then for every ke R the set

(20) A, = {xeH*| f(x) >k}

is saturated non-measurable.
Proof. There exists an xo€ H* such that d = f(x,) > 0. For ne Z put

B,={xeH*|nd <f(x) <(n+1)d}.
We will show that
(21) B,+xo=B,,, for neZ.

Take an xeB,+ x,. This means that x =t+ x,, where teB,. Hence

(22) nd< f(t)<(n+1)d
and, since f(x) = f (})+f (xo) = f()+d, we get
(23) (n+1)d < f(x) <(n+2)d.

Further, since re H* and x,€ H*, by (18) we have xe H*. Consequently,
x€B,,,;, which shows that B,+x, < B,,,;. Conversely, if xeB,,,, then
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xeH* and f(x) fulfils (23). Hence t = x—xo,€ H*, and f(t) = f(x)—f (xo)
= f(x)—d fulfils (22). Thus teB, and x =t+Xx,€B,+x,. Consequently,
B,., < B,+x,, which completes the proof of (21).

Relation (21) shows that all sets B,, ne Z, are congruent under trans-
lation, and hence they have the same outer measure. Since

+
U B,=H*

according to (17) we must have

(24) m.(B,) >0 for nelZ.

Since for every k € R there exists an ne Z such that B, < A,, relation (24)
implies
(25) m,(4,) >0 for keR.

Now, suppose that for an open set G we have 4,nG = for a keR.
Then f <k on GNnH* and, by Theorem 1, f would be continuous. This
shows that every set A4,. keR, is dense in R".

Fix a keR and take x, ye A, ,. Then x, ye H* whence by (18) we
obtain x+yveH* and f(x) > k. f(y) > 'k, which implies f(x+y) =f(x)+
+/(v) > k. Consequently, x+yeA4,. This shows that A,,,+ 4,, < A,. By
- Lemma 1, relation (25), and the fact that A4,, is dense in R", we have

m,-(RN\A,() < m; [RN\(Aklz +Ak[2)] =0.

On the other hand, since A, < H*, by (19) we have m;(4,) =0.
Consequently, the set (20) is saturated non-measurable, which was to be
proved.

4. Now we can improve on theorems of Section 2.

THEOREM 4. If H < RY is an arbitrary Hamel basis and A = RN is an
arbitrary Lebesque measurable set of positive measure, then (4) holds.

Proof. Let f: RY - R be an arbitrary discontinuous additive function
and let the set A4,, keR, be defined by (20. By Lemma 3 we have
AnA, # O for every ke R, which means that f is not bounded from above
on An H*. Consequently, AnH*e #, which in view of (2) implies (4).

THeOREM 5. If H < R" is an arbitrary Hamel basis and A < R" is an
arbitrary Lebesque measurable set of positive measure, then (16) holds.

Proof. Let D = R be an arbitrary open and convex set such that
ANH* < D and let f: D — R be an arbitrary convex function such that the
restriction f|An H* is continuous. By the Lebesgue density theorem, the set
of those points of A which are density points of A has positive measure, and
thus, by Theorem 3, has a non-void intersection with H*. Let he AnH* be a
density point of A. Since f|AnH* is continuous at h, there exists a
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neighbourhood U of h such that f|AnH* is bounded on UnAnH*. The
set UNA has positive measure, so by Theorem 4 we get UnAnH*e s/
Consequently, the function f, being — in particular — bounded from above
on UnANH*, is continuous. Hence we obtain. (16).

S. By quite similar arguments one can derive topological analogues of
the results in Sections 3 and 4.

A set A c R is called saturated non-Baire (cf. [12]) if neither 4 nor
RM\ A contains a second category Baire set. (In this definition the space RY
can be replaced by an arbitrary topological space X.)

THEOREM 6. If H < R" “is an arbitrary Hamel basis, then the set H* is
saturated non-Baire. '

LemMa 4. If H < RY is an arbitrary Hamel basis and f : RN - R is an
arbitrary discontinuous additive function, then for every ke R the set (20) is
saturated non-Baire.

THeorReM 7. If H-< RN is an arbitrary Hamel basis and A < RY is an
arbitrary second category Baire set, then (4) holds.

TueoreM 8. If H < R is an arbitrary Hamel basis and A < R" is an
arbitrary second category Baire set, then (16) holds.

The proofs of Theorems 6-8 and of Lemma 4 do not differ essentially
from those of Theorems 3-5 and of Lemma 3, and therefore are not given
here. However, let us note that, instead of Lemma 1, its topological analogue
must be used. Such an analogue may be found in [12].

From Theorems 5 and 8 we obtain the following results which in the
one-dimensional case (N = 1) have been proved in [7] and [8].

CoroLLARY 3. If A< R" is an arbitrary Lebesgue measurable set of
positive measure, then Ae.</,.

CoROLLARY 4. If A = RY is an arbitrary second category Baire sei, then
Ae /..
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