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1. Introduction. In [7], Kalton described those locally convex spaces
which can serve as domain spaces for a closed graph theorem in which
the range space is an arbitrary separable Banach space. Subsequently,
in [10] we considered a similar problem where the range space is now an
arbitrary Banach space of linear dimension at most ¢, the cardinal number
of the real line. It is not difficult to see that a Banach space has linear
dimension at most ¢ if and only if its density character is at most ¢. The
main purpose of this note is to examine the general situation where we
have Banach spaces of arbitrarily preseribed maximum density character a.
We describe the corresponding domain spaces, which we call G (a)-barrelled
spaces, and investigate their basic properties. We also relate them to the
a-barrelled spaces of Valdivia [15].

For simplicity, we will restrict attention here to separated locally
convex spaces, although our results extend easily to the non-separated
case. If F is a locally convex space, then B’ will represent its (continuous)
dual and E* its algebraic dual. We shall use both the forms X and (X, &)
to represent a topological space, the latter being employed when it is
convenient to name the topology & on the underlying set X. The restric-
tion of a topology £ and a mapping f to a subset ¥ will be written as &|p
and f|y, respectively. |A| will stand for the cardinality of a set 4. Gen-
erally, we follow the topological vector-space notation of [12].

We are indebted to Dr. A. G. Hamilton for some helpful discussions

on cardinal arithmetic. The first-named author gratefully acknowledges
the support of a Commonwealth Academic Staff Scholarship.

2. Some barrelledness concepts. Let (¥, £) be a locally convex space,
let B be a barrel in (E, &) and let a be an infinite cardinal number. If

q¢: E—~E/(\AB

A>0
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is the quotient map, the gauge of ¢(B) is a norm on E/()AB. We shalt

A>0

say that B is a G(a)-barrel in (E, £) if E/() AB has density character at

A>0

most a for the resulting norm topology, and that (E, &) is G(a)-barrelled
if each G(a)-barrel in (E, £) is a £-neighbourhood of 0. Clearly, if « and g
are infinite cardinal numbers with a < §, then each G(a)-barrel is a G(8)-
barrel and each G(p)-barrelled space is G(a)-barrelled. Also, a locally
convex space is barrelled if and only if it is G(a)-barrelled for each infinite
cardinal a.

Our first result gives a dual characterization of G (a)-barrels.

THEOREM 1. Let E be a locally convex space and let A be a non-empty
absolutely convex o(E', E)-bounded set. Then the following are equivalent:

(a) A° 8 a G(a)-barrel;

(b) the uniformity induced on A by the o(E’, E)-uniformity on E’
has a base consisting of at most a sets;

(¢) o(E'y E)| 4 has a base of neighbourhoods of 0 consisting of at most e
sels.

Proof. Let C be the o(B*, E)-closure of A and let H be the linear
span of C. Then H is the dual of the normed space E/()14° and C is
the closed unit ball of H. 4>0

Suppose that (a) holds. Let D be a norm-dense subset of E/ () 24°

i>0

with |D| < a and let @ be the set of non-empty finite subsets of D. We
note that o(E*, E) and o(H, E/ () A4°) coincide on C, that D separates
>0

the elements of H, and that a separated compact space has a unique
uniformity. Consequently,

2 = {{(m’,y')eG’xG: Kz, &' —y"H| <7, €q}: ”'EQ+,¢E¢]

is a base for the uniformity induced on C by the ¢(E’, E)-uniformity on E’;
it is eagily seen that |#| < N,a = a. This gives us (b).

Trivially, (b) = (e).

Suppose finally that (c) holds. We can find a set {p, : 1 € A} of non-
‘empty finite subsets of ¥ such that |4| < a and

{{o' e A: (o, sy <1,z eq}: de )
is a base of neighbourhoods of 0 for ¢(E’, E)|,. For each non-empty finite
subset ¢ of E, the set
{#'ed: Ko, 2")| <1, 3 € ¢}

is o(E', E)-dense in {&' € 0: |[{w,s")| <1, 2 € p}. Consequently,

{#'e0: |z, a0")| <1,meq}: Ae A}
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is a base of neighbourhoods of 0 for o(E*, E)|y. If o’ € O\{0}, we can
therefore find # € | {p;: 4 € A} such that |<z, #’)| > 1. This implies that
the set of equivalence classes in E/ (") 24° of the elements of | {;: 1 € 4}

A>0
is total for the norm topology. Taking rational or complex-rational linear

combinations gives us a norm-dense subset of cardinality at most a. This
establishes (a).

In the notation of the proof, ¢(E* E)|, is the coarsest topology on C
making each x|, continuous (# € D). Since the scalar field has a countable
base for its topology, we deduce

COROLLARY. Let B be a G(a)-barrel in a locally convex space E. Then
o(E'y E)|g has a base consisting of at most a sets and each subset of B° has
a o(E', E)-dense subset of cardinality at most a.

Remarks. 1. For an infinite cardinal a, Valdivia [15] calls a locally
convex space E a-barrelled if each o(E’, E)-bounded set of cardinality
at most a is equicontinuous. An N,-barrelled space is also said to be
w-barrelled [9] or o-barrelled [2]. We infer from the Corollary that each
a-barrelled space is G(a)-barrelled, but — as we shall see in the sequel
{Examples (ii)-(iv)) — the reverse implication does not hold in general.

2. Let B be a locally convex space. The proof of Theorem 1 effective-
ly shows that the G(¥,)-barrels are precisely the polars of the absolutely
convex o(E’, E)-bounded metrizable sets. Oonsequently, the G (N,)-barrel-
led spaces are the elements of Kalton’s class €({) = ¥({p) ([7], Theo-
Tem 2.6).

Theorem 1 and the Corollary to Theorem 3 of [11] show that the
G(c)-barrels are the polars of the (absolutely convex) o(E’, E)-bounded
essentially separable sets and that the G (c)-barrelled spaces coincide with
the 8-barrelled spaces (see [10] or [11] for definitions).

We now consider intersections of G'(a)-barrels.

THEOREM 2. Let E be a locally convex space and let & be a set of G(a)-
barrels in B such that

B* = n {B: .B € g}
48 absorbent. If a'*! = a, then B, is a G(a)-barrel in E.
Proof. Let o be an ordinal whose cardinal is |#| and list the elements
of # as B, (Me [0, 0)). For each 1€ [0, o) we can find a subset D; of B
such that
(a) given ¢ > 0 and @ € E, there exists a y € D, such that
Ke—y, s> <e for all 4’ e Bj,

(b) |Dil < a.
Let F be the Banach space of bounded scalar-valuet funections on
¢ = | J{B;:4¢[0,0)} with the supremum norm. Let # € E and ¢ > 0.
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For each A € [0, o), choose ¥y = y, so that (a) holds, and define f on C by

oy @’y if 2’ € By,

f@) = Y@y a2 e B;NU{B,: uel[0,4)},1€(0,0).
We have
(%) K#, 2"y —f(#')| <e for all ' eC,
and
(%) sup {|f(2')|: 4" € C} < e+sup {|<@, 2')|: ' € C} < oo.

Let G be the collection of all functions f constructed in this way
for all # e £ and &> 0. Then, by (*x), @ = F and, by (*), {®lo: 2 € E}
is contained in the closure of G in F. Also |G| < a!¥! = a. Since F is a metric
space, we can now deduce that {#|,: # € E} has a uniformly dense subset
of cardinality at most a. It now follows that B, = C° is a G(a)-barrel.

COROLLARY 1. Any non-zero finite intersection of G(a)-barrels is a G(a)-
barrel.

”n
Proof. If B,, B,,..., B, are G(a)-barrels, then (") B, is absorbent
and a® = a. The result now follows from Theorem 2. ™!

Corollary 1 shows that .the set of G(a)-barrels in a locally convex
space (E, &) forms a base of neighbourhoods of 0 for a locally convex
topology, n say, on E (see [12], Chapter I, Theorem 2). Since {r e E:
[{w, ®'>| < 1} is trivially a G(a)-barrel for each ' € E’, we certainly infer
that 7 is finer than o(E, E’'). If (E, &) is G(a)-barrelled, then 7 is easily
seen to be the coarsest G(a)-barrelled topology of the dual pair (E, E').
If (B, &) is G(c)-barrelled, then 7 is the topology 6(E, E’) of [10], Theorem 2.

COROLLARY 2. Let F be a G(a)-barrelled space. If o™ = a, then B is
countably barrelled [5] under the coarsest G(a)-barrelled topology of the dual
pair (E, E').

This follows from Theorem 1 of [5] by taking a countable £ in our
Theorem 2.

COROLLARY 3. Let E be a locally convex space and let a,y be mfinite
cardinals such that 2¥ < a. If A is a mon-empty o(E’, E)-bounded set with
14| < y, then A° is a G(a)-barrel. Consequently, if E is G(a)-barrelled, then
it is also y-barrelled.

Proof. As previously, {we E: |{x,2')| <1} is a G(2")-barrel for
each »' € E' and, in view of (27)" = 2" = 27, it follows from Theorem 2
that

4° = {z e B: Kz, o'y < 1}

x’ed
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is a G(27?)-barrel since A° is absorbent. As already observed, this implies
that A° is a G(a)-barrel. The second assertion is now immediate.

Remarks. 1. Theorem 2 holds, in particular, if
a=2" and |B|I<B for a<d¥<<f =2 =20 =aq.
We may then take |#| < ¥, so that Corollary 2 holds for any such a.

In Example (iii) we will show that Corollary 2 can fail if N, < a < ¢.
Asgsuming the Generalized Continuum Hypothesis (GCH), in Example (iv)
we construct counterexamples to Theorem 2 and Corollary 2 for all cases
where the cardinality assumption does not hold.

2. Even if a = 2%, then a G(a)-barrelled space E may fail to be count-
ably barrelled if its topology is not the coarsest G(a)-barrelled topology
of the dual pair (E, E’) (see [11], Section 3).

3. If we accept GCH, we infer from Corollary 3 that a G(a)-barrelled
space i8 y-barrelled for any infinite cardinal ¢ such that y < a. However,.
a8 shown in Example (iii), we cannot reach this conclusion without some
further axiom.

3. Examples. In the following, K = R or C and for each non-nega-
tive real number r we put I, = {w e K: |o| < r}.

(i) Let a and B be infinite cardinals with a < 8. Let B be any set
of cardinality f and put

B =EK®, F ={ecKE: supps'|<a},

where supps’ = {AeB:§ #0} if @ = (&);ge KE. Each o(F, E)-
bounded set of cardinality at most a is contained in a subset of £’ of the
form J]{I,u: 4 € B}, where |{A: () # 0}| < a. Consequently, (E, ©(E, E'))
is a-barrelled and, therefore, G(a)-barrelled. However, (E, z(E, E')) is
not G(p)-barrelled, since IZNE’ is not o(E’, E)-relatively compact while
its polar is a G(B)-barrel (cf. [15], Theorem 2).

(ii) Let A be an infinite set with |A| = a > ¢. Identifying I (4)
with the space of bounded continuous scalar-valued functions on the
discrete space A, we see that the set of unit point masses J, for . € g4
provides 22° distinct elements of 1.,(A4)’. Since 6, — 8yl =2 if » #y,
{6,: @ € pA} has no norm-dense proper subset and, consequently, the
Banach space 1,(4)" must have density character (at least) 2*°. Therefore,
the closed unit ball B of 7,(A4)’ is not a neighbourhood of zero if 1,(4)"
has the coarsest @ (2°)-barrelled topology 7 of the dual pair (I,(4)’, I,(4)").

The closed unit ball O of 1,(4) i8 o (l,(A)”, ln(4))-dense in B° and
[C] = ¢* = 2% Thus, under 7, I (4)" is G(2%)-barrelled but not 2°-barrel-
led (cf. [11], the Remark following the Corollary to Theorem 3).

(iii) Suppose that ¥, < a < ¢ and let 5 be the coarsest G(a)-barrelled
topology of the dual pair (K&, KX). Now (IX)° is a barrel but not a G(a)-
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barrel in K&, To see this, note that if D is any subset of K& of cardinality
at most a, then

| U {suppa: # € D}| < o, = a.
Then for any i e K\[J {supi)w: x € D} we have

& = (0 )uxelf and {(x,z’) =0 for all zeD.

Since IX is separable under ¢(K%X, K®) (see [4]), K& is neither
.o-barrelled nor countably barrelled under 7.

(iv) Here we assume GCH. Let a be any infinite cardinal and let A
be any set of cardinality 2°. By [4], I has a o(K4, KY)-dense subset
-of cardinality a, say {®,: » € N}, where |[N| = a. If §, is the cofinality of a,
then we can find a family {N,} . of non-empty subsets of N such that

UW,:peM} =N, |NJ<a (peM) and |M]=A4,.

For each u € Mlet A, = {w,:» € N,}. Then 2M4! < a 80 that each A
i8 a @(a)-barrel by Corollary 3. As in (iii), (I{')° = ({4.: 4 € M} is a barrel
‘but not a @(a)-barrel.

Let E be a locally convex space with scalar field K and suppose that
‘there is a set # of G(a)-barrels in £ whose intersection is absorbent and
such that |#| > f,. Then

# ={A,xB:ueM,BeR

is"a set of G (a)-barrels in K x E of the same cardinality. The intersec-
tion of the elements of #’ is a barrel but not a @(a)-barrel. From [3],
‘Theorem 7.3, we note that o = a if and only if 8 < f,. Consequently,
‘Theorem 2 can fail in each case where the hypothesis on the cardinals
does not hold.

In particular, we deduce that if a has cofinality &,, then K4 ig
neither a-barrelled nor countably barrelled under the coarsest @(a)-barrelled
topology of the dual pair (K4, K4).

4. Closed graph theorems and permanence properties. We begin by
characterizing G (a)-barrelled spaces by means of a closed graph theorem.
First we require

LEMMA. Let E and F be locally conves spaces and let t: H — F be a linear
mapping. If B is a G(a)-barrel in F, then clt™*(B) is a G(a)-barrel in E.

Proof. Let

q: F—>F|[() AB
A>0
‘be the quotient map. We can find a subset D of E such that |D| < a and
.g(t(D)) is norm-dense in ¢(¢(E)). Given @ € F and & > 0, we can therefore
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find y € D such that #(»)—1#(y) € eéB, which implies
x—1y e et~ (B) < eclt™(B).

The result now follows.

THEOREM 3. Let E be a locally conven space. Then E is G (a)-barrelled
¢f and only if, whenever F is a Banach space of density character at most a
and t: B — F i3 a linear mapping with a closed graph, t i3 continuous.

Proof. The necessity of the condition follows immediately from
the Lemma and from [8], 11.1, since the closed unit ball of a Banach space
of density character at mogt a is trivially a G'(a)-barrel.

The proof of the sufficiency is standard. For a G(a)-barrel B in H,
let F be the completion of the normed space E/ () AB. Then F is a Banach

A>0
space of density character at most ¢, and the quotient map

q: BE—~E| ﬂ AB
A>0
has a closed graph in F X F. Consequently, if the condition is satisfied,
then q is continuous as a mapping of E into F, which implies that B is
a neighbourhood of 0 in E. (See, for example, the proof of Proposition 11,
Chapter VI in [12].)

Now, the following permanence properties of G(a)-barrelled spaces
can immediately be obtained by applying Theorems 2.1 and 2.2 of [6]
and the methods of Corollary 1 to Theorem 3 in [10].

COROLLARY. (a) An inductive limit of G(a)-barrelled spaces is G(a)-
barrelled.

(b) Any product of G(a)-barrelled spaces is G(a)-barrelled.

(¢) If E is a G(a)-barrelled space and H i3 any subspace of the comple-
tion of E which contains E, then H i3 also G (a)-barrelled.

Remark. We note that, by Remark 2 following the Corollary to
Theorem 1, in the cases a =N, and a= ¢ Theorem 3 gives us the equiv-
alence of (iii) and (iv) in Theorem 2.6 of [7] and Theorem 3 of [10].

In [10], Theorem 4, we show that the §-barrelled spaces have the
countable codimensional subspace property. In fact, this holds for all
@ (a)-barrelled spaces.

THEOREM 4. Let (B, &) be a G(a)-barrelled space and let F.be a countable
codimensional subspace of E. Then (F, &|5) is G(a)-barrelled.

Proof. Let B be a G(a)-barrel in F' and let H be the closure of F
in E. Let A be the set of extensions by continuity of the elements of B°
(polar in F') to H. Since E is also G(N,)-barrelled, we deduce from the
Corollary to Theorem 1.4 and Theorem 2.6 in [7] that E' is o(&', E)-
sequentially complete. Since F' and H must have countable codimension

§ — Colloquium Mathematicum XL.2
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in H and E, respectively, it follows from the Theorem in Section 4 and
the Lemma in Section 2 of [9] that A is an absolutely convex o(H’, H)-
bounded set. Let L be a supplement for # in # and extend each &' € 4
to an element of E* by putting (#, 2’> = 0 for each # € L. By the Lemma
of Section 2 in [13], the resulting set 0 of extensions is contained in E';
it is clearly o(E’, E)-bounded and absolutely convex.

By Theorem 1 there is a family {¢,;},., of non-empty finite subsets
of F such that |4| < a and

{{#' e B°: K, 2")| < 1,28 € 9}: A e A}
is a base of neighbourhoods of 0 for o (F’, F)|z.. Let {y,: n € N} be a subset:
of (H\F)u{0} which spans a supplement M of F in H. By expressing
each element of F as the sum of elements of F, M and L, it is easily seen
that the sets

1
{#' €eC: Kn,2')| <1, e«pl}n{m' eC: [{y,, x| <;,r =1,2, ,fn}

(Aed,neN)

form a base #Z of neighbourhoods of 0 for ¢(E’, E)|y. Since |Z| < a¥, = a,
we infer from Thcorem 1 that C° is a G(a)-barrel in E. The result now
follows since C°NF = B.

Finally, we give a closed graph theorem characterizing a-barrelled
spaces. This is not so satisfactory as Theorem 3 since it involves a “mixed?”
condition.

THEOREM 5. Let (E, &) be a locally convex space and let a be an infinite
cardinal number. Then the following are equivalent:

(i) (B, &) is a-barrelled.

(ii) Let t: E — F be a linear mapping such that

(a) F i8 the dual of a Banach space H with density character at most a,

(b) the graph of t is closed for & x o(F, H).

Then t is continuous under & and the norm topology B(F, H).

(iii) The same assertion as (ii) with F and H replaced by 1,(A) and
l,(4), respectively, where |A| = a.

Proof. (i) = (ii). Let ¢:  — F be as in (ii) and consider its transpose:
t: ¥’ — E* (where F' = H"'). By hypothesis, ¢ ~!(E’) contains a o(H, F)-
dense subspace of H. Since such a subspace is also dense in the Banach
space H, each element y’ of H is the limit (under z(H, F)) of a sequence
(y,) in '~1(B")nH. Since F is also o-barrelled, {¢'(y,): n € N} is an equi-
continuous subset of E’, and so its o(E*, E)-closure is contained in E’.
This implies that ¢ (y') € B’ and, consequently, H < t'~!(E’).

The closed unit ball B of H is dense in the closed unit ball B’ of F"
under o(F', F). If D is any dense subset of the Banach space H with |D| < a,
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then DNB is a o(F"’, F')-dense subset of B’ of cardinality at most a. Since
t'(DNB) is o(E’, E)-bounded, it is equicontinuous by hypothesis. It now
follows as before that ¢’ (B’) is an equicontinuous subset of E’, so that ¢ is
continuous as required.

(if) = (iii). It is easily seen that l,(4) has density character [A| for
any infinite set A. Consequently, (iii) is a special case of (ii).

(iii) = (i). Let C be any non-empty o(E’, E)-bounded set with |C]| < a.
By introducing a repeated term if necessary, we may write the elements
of C as a family {#;},.,, where [4| = a. Consider the mapping t: E -1 (4)
defined by

(@) = ({B) #2))sea-

The o (l,(4), lo(A))-dense subspace

M = {(Eeat 1{A: &1 # 0} <N}

of l,(4) is mapped by the transpose ¢’ of ¢ into E’, for if # € E and (£,),., € M,
then

(@, ¥ ((£))) = <@y D),y () = D) &adm, 33> =, D) &137 ).

This shows that the graph of ¢ is closed under & x o(l,(4), ;;(4)),
and so, by hypothesis, ¢ is continuous under & and the usual norm topology
of I, (A). We note finally that if B is the closed unit ball of I (4)’, then

O =1t ({(83)pea’ 2 € A}) € ¥(B),

which is equicontinuous.

Remarks. 1, If a = N,, then we are concerned in (ii) with the duals
of separable Banach spaces, and the spaces in (iii) are the ordinary 7,
and 1. In the case a = ¢, the spaces in (ii) are the duals of Banach spaces
with linear dimension at most c.

2. A simple modification of the argument in [9] for w-barrelled
spaces shows that a-barrelled spaces have the countable codimensional
subspace property.

ProBLEM (P 1051). Let X be a completely regular space and let 0 (X)
be the space of real-valued continuous functions on X with the topology
of compact convergence. When is C,(X) a G(a)-barrelled space?

We note that in [1], Théoréme 4.1, (a) < (e), Buchwalter and Schmets
give a characterization of o-barrelledness for C,(X), which easily extends
to describe a-barrelledness for such spaces. Also, in [14], Theorem 9, it
is shown that o-barrelledness and G(¥,)-barrelledness are equivalent
for C,(X).
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Added in proof. Two related articles by A. Marquina (4 note on
the closed graph theorem, Archiv der Mathematik (Basel) 28 (1977), p. 82-85)
and H. Pfister (Uber das Gewicht und den Uberdeckungstyp von uniformen
Riumen und einige Formen des Satzes von Banach-Steinhaus, Manuscripta
Mathematica 20 (1977), p. 51-72) have appeared after submission of this

Ppaper.

REFERENCES

[1] H. Buchwalter and J. Schmets, Sur quelques propriétés de Vespace Cyg(T),
Journal de Mathématiques Pures et Appliquées 52 (1973), p. 337-352.
{2] M. De Wilde and C. Houet, On increasing sequences of absolutely convexr sels
in locally convex spaces, Mathematische Annalen 192 (1971), p. 257-261.
(3] F. R. Drake, Set theory, Amsterdam 1974.
[4] E. Hewitt, A remark on density characters, Bulletin of the American Mathemati-
cal Society 52 (1946), p. 641-643.
[6] T. Husain, Two new classes of locally convexr spaces, Mathematische Annalen
166 (1966), p. 289-299.
{6] S. O. Iyahen, On the closed graph theorem, Israel Journal of Mathematics 10
(1971), p. 96-105.
{71 N. J. Kalton, Some forms of the closed graph theorem, Proceedings of the Cam-
bridge Philosophical Society 70 (1971), p. 401-408.
{8] J. L. Kelley, I. Namioka et al.,, Linear topological spaces, Princeton 1963.
[9] M. Levin and 8. Saxon, A note on the tnheritance of properties of locally convex
spaces by subspaces of countable codimension, Proceedings of the American Mathe-
matical Society 29 (1971), p. 97-102.
{10] J. O. Popoola and I. Tweddle, On the closed graph theorem, Glasgow Mathe-
matical Journal 17 (1976), p. 89-97.
{11] — A variant of separability in dual systems, Proceedings of the Edinburgh Mathe-
matical Society 20, Series II (1976-1977), p. 317-327.
{12] A. P. Robertson and W. J. Robertson, Topological vector spaces, 2nd cdition,
Cambridge 1973.
{13] 8. Saxon and M. Levin, Every countable-codimensional subspace of a barrelled
space is barrelled, Proceedings of the American Mathematical Society 29 (1971),
p. 91-96. '
[14] 1. Tweddle, Some results involving weak compactness in C(X), C(vX) and C(X)',
Proceedings of the Edinburgh Mathematical Society 19, Series II (1975),
p. 221-229.
{15] M. Valdivia, A mote on locally convex spaces, Mathematischc Annalen 201
(1973), p. 145-148.

DEPARTMENT OF MATHEMATICS DEPARTMENT OF MATHEMATICS
UNIVERSITY OF LAGOS UNIVERSITY OF STIRLING
LAGOS STIRLING

DEPARTMENT OF MATHEMATICS
MCMASTER UNIVERSITY
HAMILTON, ONTARIO

Regu par la Rédaction le 19. 11. 1976



