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0. Let A and B be disjoint subsets of a locally compact Abelian
group I', and let G be the dual of I'. The following condition was intro-
duced in [8] and discussed further in [3]:

(M) There is a constant C > 0 such that for any pair of trigonometric
polynomials

POC) = D a0, ) and  PO() = D aP(®, ),
finite finite

where y{") € A, ¥ e B, we have
IPM + PO, = C(IPVlgo + IPP|co) -

If A and B satisfy (M), we call them harmonically separated (h.s.).
It is obvious that (M) is equivalent to

(M') s+ pallpae = C(llallpar + g2 llpag)

for any pair of discrete measures u, € M(A) and u, € M (B), where ||ullpy
= ||#ll, (4 — the Fourier transform). It is also clear that the inequality
in (M) extends to all pairs of almost periodic functions on @ whose Fourier
exponents belong to A and B, respectively. This in turn means that the
Fourier series > of any almost periodic function the exponents of whieh
belong to AU B splits into two parts ), and }',, Fourier series of almost
periodic functions with exponents in A and B, respectively.

By duality we obtain one equivalent condition more. For any compact
group @ let C;(G) denote the space of continuous functions with spectrum
in E. Let G denote the Bohr compactification of G. We saw that (M)
means that the following decomposition holds:

(1) C4us(@) = 04(G)+Cx(@).
Tl}'e corresponding decomposition holds for the dual Banach space
0%.5(@). Thus the Dirac measure 8, on @ is representable as », +»,, where

»]A =0, »,|B = 1. Conversely, if such », and », exist, then — setting
f =f#v,+f*v, for any fe C  5(G) — we get (1). Hence we have
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PROPOSITION 1. (M) holds if and only if there exists a measure v on
G such thaty |A = 0,9 |B = 1. (v is called a separating measure.)

By this proposition and by (1) we obtain
PROPOSITION 2. (M) ¢mplies that, for 1 < p < oo,
L5u5(@) = LE(GHDLE()
and (M) i8 equivalent to this decomposition for p = oco.

To prove the first part one may use the convolution with » while
the second follows from the equivalence of norms in ¢ and L*. We note
that the space L?(@) can be regarded as the space of BP-almost periodic
functions (i.e. in the sense of Besicovitch) on G.

Two sets A4 and B will be called fully harmonically separated (fully
h.s.) if they can be enlarged to some sets A’ and B’ such that A’ and B’
are still h.s. and A'"UB’ = I'. By Proposition 1 we see at once that this
condition is equivalent to the existence of an idempotent measure whose
Fourier transform equals 1 exactly on A’. Hence all pairs of sets which
are fully h.s. can be described by means of known Cohen’s theorem,
whereas the problem of decomposition of a set F into two h.s. parts
reduces to the study of “relative idempotents” on E, i.e. idempotents
of B(I')/Jg, where B(I') is the algebra of Fourier-Stieltjes transforms
and J, denotes the corresponding ideal in it. No simple characterization
of such idempotents seems to be known or even possible. Examples in
Z or R we intend to give are aimed to shed some light on this problem.

1. Owing to the theorem of Cohen it is very easy to find examples
of sets of integers which are h.s. in Z (or in other groups). The set of even
and that of odd integers may be the simplest ones, besides the trivial
case A finite, B arbitrary. Actually, it is the easier part of Cohen’s theorem
(a sufficient condition for a set to be the support of an idempotent in
B(I')) that is needed in examples of this kind. The difficult part (neces-
sary conditions) allows us to find pairs of not h.s. complementary sets
such as Z* and Z~, a well-known negative instance. In general, it seems
to be more difficult to prove that some given sets are not h.s. that to
state the contrary if it occurs. Here are two problems concerning not
full harmonic separation:

1°find sets Z in Z (if there are any) such that E = AuBand ANB=0
imply that A and B are h.s. (extreme harmonic decomposibility);

2° find sets F in Z (if there are any) such that ¥ = AUB, 4 and
B being infinite, implies that A and B are not h.s. (harmonic indecom-
posibility).

The answer to the first problem is immediate: they are precisely
Sidon sets (see, e.g., [10], p. 4). The answer to the second problem (raised
by M. Bozejko) was recently found by C. McGehee: h.s. sets do not exist
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(not published yet). We return to this subject later on for a related
problem.

We call a sequence (y,,) uniformly distributed (u.d.) in an l.c.a. group if

1
= L)+ 451 > T(f) (mesn value)

holds for any almost periodic function on I' (¢f. [9], p. 295).

We recall the known theorem of H. Weyl stating that for any in-
creasing sequence of integers (n,) the sequence (n,a) is u.d. (mod 1) for
almost every real number a. The sequence (n,) may be called of first
(second) kind if the set of a’s for which (n, a) is not u.d. (mod 1) is countable
(uncountable). Finally, we say that F = Z is a Kaufman set (Ka-set)
if there exists a continuous measure on T such that

inf |4 (n)] > 0.
E

The (relative) density of a set A = Z with respect to an increasing
sequence F = (a,)5__,, of integers will mean

1
lim —

I 2N'{|'n|<l\7: a, € A}.

Replacing im by lim (lim) we get the upper (lower) relative density.
The modification for sets and sequences in Z* is obvious. If 4 < E, we
say also “the density of A4 in B”. We occasionally do not distinguish
between a set of integers and the increasing sequence of its elements.

LEMMA 1. A Ka-set has density 0 with respect to every sequence of first
kind.

Proof. We have but to reproduce with some caution the argument
used in [6], Theorem 12. Let us suppose to the contrary that some se-
quence (n,) of first kind contains a Ka-set A such that for a sequence of
indices ¥, < k, < ... we have

1

(2) V——l4n{ny, ..., m } > e>0.

s kg
Let x4 be a continuous measure such that

inf |2 (n)] > 0.

We put » = u*u*; then » = |/, igf&(n)> 6 for some 6 >0, and

v is continuous. Since (n,) is of first kind, » vanishes identically on the
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set of a’s for which (n,a) is not u.d. (mod 1). Thus, on account of Weyl’s
criterion, we have

K
£ 1 J
hlrznfk ';', exp(—2mninga) =0 »-a.e.
Since

f exp( —2win, a)dv(a) = »(n,),
7

by the Lebesgue bounded convergence theorem we get

1 &
lim - 2 5(ny) = 0.
k=1
On the other hand, »(n) > & for each n € A and »(n) > 0 for any =,
whence, by (2),

1WA,
ll:n. E—g Y (%) = 86,
a contradiction.

Let us call a point p € Z a density point of F < Z if every neighbour-
hood of p in Z intersects F in a set whose upper density with respect to
E (naturally ordered) is positive.

THEOREM 1. If E, and E, are sets of first kind in Z having a common
density point, then they are mot h.s.

Proof. Suppose the contrary. Then there exists a measure u € M(T)
such that u(n) =0 if ne B, and u(n) =1 if ne ;. Lot u = u,+ g,
where u, is continuous and u; is discrete. For ¢ > 0 we have |4,(n)] < e
outside a Ka-set 4. By Lemma 1 the set ANE,; has density 0 in H,
(¢* =1, 2). Hence the assumption implies that the sets F,\4 and Fy\A4
have still a common cluster point in Z. But we have |#a(n)] < e for
n € B,\A and |az(n)] > 1 —e for n € B\ A. Since u,; is an almost periodic
function (i.e. continuously extendable on i), this leads to a contradiction
if we choose ¢ < }.

LEMMA 2. If an increasing sequence (n;) i8 w.d. in Z, then (n;) is of
first kind.

Proof. If ¢ is real not integer, then M(e**) = 0, whence for a u.d.
sequence (n,) we have

k
.1 .
hllcn—’; E exp (2wtiny) = 0.

=1
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If ¢ is irrational, then the same holds for !¢ instead of ¢, where 1 is
any integer not equal to 0. Now from Weyl’s criterion it follows that
(tn;) is u.d. (mod 1).

THEOREM 2., If E, < Z i8 u.d. and B, < Z i3 of first kind, then E,
and E, are not h.s.

Proof. Since E, is infinite, it has a density point in view of the com-

pactness of Z. But every point of Zisa density point of E,. Hence it is
enough to apply Lemma 2 and Theorem 1.

LEMMA 3. If s € Z*, then 0 is a density point of (n°)3,.
Proof. Let U be a neighbourhood of 0 in Z determined by some
e> 0 and some real numbers a,,...,a,. So n e U iff

[lexp(2nina) -1l <e (je[L,r]).

Let g, =1, f1,..., B, be any system independent over Q and such
that its linear span over Q contains all a,. There exist & @ € Z+ and in-
tegers p{’’ such that

ARNG)]
o = 2% B (Gel1,r).

l=1

Thus

»

(3) Qaq =D @ 'p"8 (mod 1) (je[1,r]).

I=1

If h,,..., h, are integers not all 0, then

n ="' Z B,
=1
is irrational, and so the sequence (n°7) is u.d. (mod1) (a well-known theorem
of Weyl). Consequently ([1], p. 71), the »-fold sequence (Q*~!B,n°)>,
(1<I<v) is u.d. (mod 1) in the y-dimensional torus. Thus, for every
8> 0, the set of n’s such that

(4) lexp (2miQ* ' fmf) 1| < 6 (Le[1,¥])

has positive Jdensity. {In ;view of (3), 6 can be chosen in a way such
that (4) implies
©XP(2miQ° ayn®) 1] <e  (je[1,7]);

in other words, @°n® € U. Obviously, the set of numbers Qn which enter
into these inequalities has still a positive density in Z*+, which completes
the proof.
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THEOREM 3. If a, > 0, then the sets ([n°]) and (—[n’]) are not h.s.
([#] denotes the integer part of x).

Proof. If a is not an integer, then the sequence (n®) is8 u.d. in R [2].
Therefrom it follows [4] that ([»°]) is u. d in Z and so is (—[n®]). If a is
integer, then (n°) is of first kind (Weyl). Consequently, if a or § is not
an integer, then the assertion follows immediately from Lemma 2 and
Theorem 2. If a and g are both integer, we apply Lemma 3 and Theorem 1
and we are done.

THEOREM 4. The set P of primes and the set —P are mot h.s.

Proof. We are going to prove that 1 and —1 are density points of P.
So they are also density points of —P. Now, the known theorem of Vino-
gradov asserts that the sequence (pa),.r is u.d. (mod 1) for every irra-
tional a. Hence P and — P are of first kind and Theorem 1 can be used
to achieve the proof.

It will be sufficient to show that 1 is a density point of P. The proof

for —1 is quite analogous. So let U denote an arbitrary neighbourhood
of 1 in Z, determined by an > 0 and some numbers a,, ..., a,. Thus

UNZ = {n e Z: |oxp(2mian) —exp(2nie))| <&} (je[l,r]).

Let 8, =1, f5,..., f, be numbers independent over Q and such
that each a; is a linear combination of f’s with rational coefficients. Let
Q denote a common denominator of these coefficients. We have p € U
if and only if all inequalities

|exp (2niey(p —1)) —1| < &
are satisfied. So if 4 > 0 is properly chosen, then p € U is implied by
inequalities
b A

9 _6<6(mod1) (L e [0,7])

and, the more, by the following system of relations in which P, means
Pn(1+mQ)m_,:

B, B

(5) pePy, |2 —b-)<6(mod1) (te[l,7]).

Q

The crucial point comes now: not only (pa),.p i8 u.d. (mod 1) for
every irrational but the same holds for the sequence of primes in any
arithmetical progression in which more than one prime occurs. The author
is indebted to Prof. Schinzel for having proved it (by adapting the original
proof of Vinogradov) and for his permission to use it here.
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Since ) h;p, =0 and h e Z imply b, = 0 (I e[1, »]) it follows from

=1
the statement above that the »-fold sequence (pf;/Q) (p € Py) is u.d.
(mod 1) in »-dimensional torus. Thus the values of p satisfying the ine-
qualities in (5) form a sequence of positive density in P,. By Dirichlet’s
theorem the density of P, in P is 1/@, whence (5) is completely satisfied
by primes belonging to a set of positive density in P. So the proof of
Theorem 4 is completed.

2. We would like to give some more examples of harmonic separation.

PROPOSITION 3. If U, and U, are open sets in I’ with disjoint closures,
then I'nU, and I'nU, are h.s.

Proof. Since the algebra A(I') is regular, it contains a function
equal to 0 on U, and to 1 on U,. Hence, as @; = (I')", there is a discrete
measure g on @ such that u =0 on U;nI'and 4 =1 on U,nTI. Now
Proposition 1 completes the proof.

H.s. sets in Z constructed in that way are relatively dense in Z,
and so they are never Sidon sets. In view of Lemma 1 and Proposition 3
we point out that the role of continuous measures in harmonic sepa-
ration is by no means negligible; for example, the sets A = (n!){® and
B = (n!+n)° are h.s., since they are both Sidon. However, there exists
no discrete measure the Fourier transform of which would be equal to
0 on A and to 1 on B, since there is no almost periodic function on Z
having this property, as it is easily seen by means of “almost periods”.

Sequences (n!) and (—n!) furnish an example of h.s. but not fully
h.s. sets. In fact, they are h.s., since they are Sidon sets. On the other
hand, let us suppose that they are fully h.s. Hence there exists a decom-
position Z = AU B into two h.s. sets such that (n!) < A and (—=n!) < B.
The set 4, by assumption and by Proposition 1, is the support of an
idempotent measure. By Cohen’s theorem the support S of x for x idem-
potent differs only for a finite set from a finite union of full (two-sided
infinite) arithmetical progressions. Let us refer to those progressions as
entering into 8. Since, for an arbitrary m € Z*, all but a finite number of
terms n! are divisible by m, among full progressions entering into A
there is at least one that contains 0. Thus there exists an m for which all
elements of the progression (km);__., except a finite number belong to
A, which is impossible since the negative terms belong to B.

Actually, the argument above shows that the sequence ( —n!)?uU(n!)P
has the property of not containing any two infinite subsets which belong
to disjoint arithmetical progressions. This property is obviously hered-
itary. Let us denote it by (P,). We have

PROPOSITION 4. Property (P,) 18 equivalent to each of the following
conditions:
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(1) The sequence is convergent tn polyadic metric (i.e. tn p-adic metric
Jor each prime to the same limit).

(2) The set cannot be decomposed into two infinite fully h.s. parts.

For the proof one needs, besides the theorem of Cohen, only some ele-
mentary arithmetics, close to that used in the special case of ( — n!)uU (n!).

To obtain a pair of h.s. sets which are not fully h.s. and non-Sidon,
one can take any two cluster points of £ = (»!)P’ in Z and any two com-
pact neighbourhoods separating them. Then B, = U,NZ and B, = U,nZ
are h.s. by Proposition 3, not fully h.s. since U;NnE and UgNE are not,
and non-Sidon because they are relatively dense in Z. An explicit example
of a set having the desired properties will be given in the next section.

3. Let us return to the problem of Bozejko formulated in Section 0
and solved already in the negative: does there exist a harmonically
indecomposable set E of integers? This problem is closely related to the
following one, which the author raised some years ago [b6]: does there
exist a set F of integers such that there exists no almost periodic
function (on Z) taking values 0 or 1 for every » € E, each of them infinitely
many times? (') Obviously, a harmonically indecomposable set must have
this property. Let us call it (P,).

ProroSITION 5. (Pg) = (P,)..

To see this let us observe that the group Z may be written as the

product [] I,,El—)li, corresponding to the representation of T; as ZCpm +R;.
p »

It is obvious that if the projection of ¥ on one of the “axes” [] I, or R

b 4
decomposes into two infinite topologically separated sets, then the same
holds for E itself, whence we infer immediately that (P,) fails. Since
I1 I, is totally disconnected, (P,) cannot hold unless the projection of

P
E on the first axis has only one accumulation point, but this simply means
that F converges in polyadic metric. Proposition 4 completes the proof.

The sequence (n!) is the simplest one fulfilling condition (P,), but
it has a property just opposite to (P;): every bounded function on (n!)
is extendable to an almost periodic function [13]. Thus we are led to
modify (n!) in such a way that its Sidonicity (and, consequently, the
interpolation property above) be destroyed but the convergence to 0 in
each p-adic metric be preserved. The simplest way is to take 1, 2, 4, 6,
12, 18, 24, 48, ...,1i.e. the sequence C built of blocks {n!,2n!,...,nn!}.
We are not able to decide whether C has property (P,). Let us observe
that the latter fails if we replace ¢ by C, by shortening the blocks in ¢
to {n!, 2n!, ..., [ny]n!}, where y € (0, 1). In fact, let us select from every
such block exactly the terms %n! with % even. Then they form together

(!) Recently answered in the affirmative by G. 8. Woodward (to appear in this
journal).
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a set A which is h.s. from C,\A4 = B. To prove this assertion we can
verify, by an easy computation, that the sets

{n‘%(mod 1)} (n,e 4) and {m,—;- (mod 1)} (m, € B)

have disjoint closures in 7. Thus 4 and B have disjoint closures as sub-

sets of Z. Since, in view of Proposition 4, C, does not decompose into
two fully h.s. sets and since it is not a Sidon set, the pair (4, B) fulfils
the announcement at the end of Section 2.

4. We go over to problems of harmonic separation on the real line.
Again, as in Z, there is no difficulty in producing examples of full har-
monic separation of two sets. Actually, that is the problem of decom-
posing R into two h.s. sets or, by Proposition 1, the problem of idem-
potents in the algebra B(R;). Thus Cohen’s theorem yields a general
golution. The set of rationals and its complement are h.s., for the set of
integers and its complement the same is true, etc. It is obvious from the
definition that two sets of integers which are h.s. in Z are h.s. in R and
conversely. It follows from Cohen’s theorem that if two sets in Z are
fully h.s. in R, then they are fully h.s. in Z and conversely.

To show h.s. not fully h.s. dense sets in B we take two reals a,, a,
independent over Q, and two disjoint intervals I, and I,. Let H be the
group of all numbers z = ¢, a,+t,a,, where ¢, = ¢,(x) and t, = i,(2) are
of the form »/2! (reZ, 1 € Z*), i.e. they are dyadic rationals. Let A be
the set of all x € H such that ¢,(x) e I,. Let B be defined analogously
with I, instead of I,.

THEOREM 5. The sets A and B, as defined above, are dense in R, h.s.,
not fully h.s., and non-Sidon in R;.

Proof. For any 7 > 0, exp (irtl(-)) is a character of H. We can choose
v 8o small that B, = {¢": t € I,} and E, = {¢'*: teI,} be separated
subsets of T. Let ¢ be any character of R; such that ¢|H = exp(izt,(*)).
Then the sets HNe~'(E,) = A and Hng !(H,) = B are separated with
respect to the topology which the Bohr compactification (R;)~ induces
in R. Hence they are h.s. by Proposition 3. It is obvious that they are
dense in R.

Let us suppose to the contrary that they are fully h.s. So there exist
sets A, o A and B, o B and a function f € B(R,;) such that 4A,u B, = R,
fld; =0, fI|B, = 1. Let

H, = {wxeH: ty(x) = 0}.
The function f|H, is an idempotent of B(H,), and so H,NnA, and

H,n B, are members of the coset ring of H;. Any such a member is of
the form .

(6) U 49nBPn ... nBY),

1=%
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where A® are cosets and Bf? are (set-theoretical) non-void complements
of cosets. Since 4, o A and B, o B, both sets H,n A4, and H,Nn B, con-
tain intervals in H,. Since H, is isomorphic to the group of dyadic ration-
als, all proper subgroups of H, are cyclic, and so non-dense in R. Hence
all proper cosets are non-dense. Therefore, among the A® occurring in
representation (6) of H,Nn A, (H,n B,) at least one is the whole group H,.
The intersections () B{’ are complements of unions of proper cosets of

H,, so they are dejnse in H,. Then both H,n A4, and H,n B, are dense
in H,. This means a contradiction which proves that A and B are not
fully h.s. They are not Sidon in R;. In fact, otherwise they would be
Sidon in H, which is impossible since each of them contains an infinite
.coset in H, e.g. {x € H: t,(x) = ¢} for ¢ € I, or ¢ € I,, respectively.

The essential point in the argument above is that two sets in the
group H,, each of which contains an interval in H,, are never fully h.s.
The same can be proved for the whole group of rationals (I owe to H. Rind-
ler a skillful technique for doing it) and used in an analogous manner
to produce examples of “bigger” sets still satisfying the assertion of
Theorem 5. Namely, we fix a Hamel basis #;,,%,...,%, ... in R, and
assume that A (B) is the set of all # € R such that, in the representation
of z with respect to (¢,), the (rational) ¢,-coordinate belongs to I, (I,),
where I, and I, are disjoint segments.

The h.s. property of a pair of sequences in R can sometimes be
stated if one knows that some other specifically related sequences are
h.s. We now prove a theorem in this direction.

THEOREM 6. Let (z,) be a strictly monotone sequence of positive numbers
tending to infinity or to zero and such that z,7; € (v,) for every i, j. Then
if the sets (—t,) and (z,) are h.s., 3o are the sets (—1;"') and (7).

Proof. According to a theorem of Glowacki [3] a countable set
A = (t;)2, < R* and a closed set B < R~U{0} are h.s. if and only if
there exists a sequence (f,) of functions in A4 (R) such that f,(¢,) =1 for
te[l,n], f,(!) =0 for te B and the norms |f,|l, are bounded. So let
(f,) be such a sequence chosen for 4 = (7;) and B = (—7;)U {0}. We put

n
T, = ” Tye
i=1

Then =, occurs in the sequence (7,) with some index indz,. We fix
numbers m, > indx, and put f,(¢) = f, (tx,) for any n. Then, if ¢ < n,
we have

Fal®e?) = f (37 70) = fnp (71 oo T Tagn on 7) =1

and, for any 1,

ful—=7Y) =£,(0) = 0.
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On the other hand, the functions f,, and f, have the same A-norm,
80 the norms llf,,ll 4 are bounded. Thus, by G~lowack1’s theorem used in
the opposite direction, the sequences (z;;') and (—7,!) are h.s.

COROLLARY. For any rational a the sequences (n®) and ( —n®) are not h.s.

For the proof it is enough to use Theorem 3.

It seems that for irrational values of a the sequences (n”) and ( —n°)
can be h.s. If this assertion holds for a > 0, then it holds for a < 0 as
well, and conversely — owing to Theorem 6. We are not able to prove
or to disprove this conjecture. (P 1135)

3. Let us say a few words about harmonic separation in the torus.
Let T be the 1-dimensional torus with characters written as €*™n
(-1/2<t<1/2,n € Z). We identify it with the interval [ —1/2 <t < 1/2).

THEOREM 7. If any sets A, B < [—1/2,1/2) are h.8. as subsets of T,
then they are h.s. as subsets of R. The converse fails.

Proof. By Proposition 1 there exists a measure u € M (Z) such that
4=0o0n A and z =1 on B. We can consider Z as a (closed) subgroup
of R whence 4 appears as & member of M (R) with support in Z. Every
character of Z is the (unique) extension of ¢*™ for some teT and it
is extendable (m many ways) to a character of R. Hence the values of
,u on (Z) = Zd-— T; are the same whether we regard u as a measure on

Z or on R. This proves the first part of the theorem.

We now set A =[—1/2,0) and B = [1/4,1/2). The sets A and B
are of course h.s. in B. We show that they are not h.s. in T'. It is immediate
that the h.s. property in any l.c.a. group is invariant under the shift
#—>x+a. Hence, if A and B were h.s. in T, so it would be the same
for A +1/2 and B+1/2 (mod 1), that is for the sets [0, 1/2) and [ —1/4, 0).
Then they would be h.s. in R but it is not the case as is well known
(and follows at once from the Corollary to Theorem 6).

THEOREM 8. Let T be the torsion part of T. If A, B< T are h.s. in
R and if Gp(AUB)NT = {0}, then A and B are h.s. in T.

In fact, more can be proved: if

P(x) = 2 a, exp (2nit,x) (4, € AUB),
k=1

then
(7) sup [P(x)| = sup|P(n)|.
zelR neZ

From the assumption it follows that there is a set {8,,...,8,} < R
such that the numbers 1, 8,,..., 8, are independent over Q and, for
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4 = Zp—k)ﬂu

where p{? and Q are integers. Substituting these expressions in P and
using Kronecker’s theorem in a standard way, we can find, for every
x € R, a suitable n for which P(n) comes arbitrarily near to P(z). This
obviously implies (7).

every k e [1, n],

6. The h.s. property plays a role in some problems concerning unions
of special sets. We recall that a set 4 in a discrete Abelian group I’ is
called a Rosenthal set (Ro-set) if any function fe L% (@) is continuous.
In non-discrete l.c.a. groups this notion splits into two, Ro and Ro®.
The first one is defined just as above and the latter means that fe L% (@)
implies f e AP(@) (i.e. the Bohr almost periodicity) [7]. A set 4 in a dis-
crete group I is called a set of uniform convergence (UC-set) if the Fourier
series of any function in C,(@) is uniformly convergent [12].

THEOREM 9. (a) Let A, be an isolated set in an l.c.a. group I' and let

Ay be a closed set in I containing all accumulation points of A,. If A, and
A, are Ro-sets (Ro*-sets) and if A, and A, are h.s., then A,V A, is a Ro-set
(Ro*-set).

(b) If A, and A; are h.s. UC-sets in a discrete Abelian group, then
A4, A, i a UC-sel.

Remark. I am indebted to P. Glowacki for statement (a). My original
statement required a stronger assumption. Statement (b) is known.

Proof. (a) Both assertions (for Ro and for Ro*) follow immediately
from the representation

(®) o = 12 + 15,

Using an approximate identity in 4 (I") we see that (8) will be proved
a8 soon as we show that every function in L3 ., ,, whose spectrum is com-
pact is a sum of two functions belonging to L2 and L% , respectively.

This in turn we obtain by a slight modiﬁcatitl)n of the proof of Theo-
rem 2 (i) in [3]. If the assertion of that theorem is replaced by (8), then
the assumption that 4, has spectral synthesis may be dropped.

(b) We decompose the Fourier series }'a,yx, of any fe C, 4, (@)
into two parts according to whether yx, € 4, or y, € 4,. Thus we get two
Fourier series of continuous functions with spectrum in A, or in 4,,
respectively (see Section 0). Since they are both uniformly convergent,
so is the series )'a,yx,.

7. In this last section we may introduce some property related to
but weaker than harmonic separation. First, let us observe that sets
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E, and B, in I are h.s. if and only if, for every sequence of trigonometric
polynomials (P,) whose spectra lie in E,UE,, the uniform convergence
P,= 0 implies P’ =20, P{ being the “F,-part” of P, according to
condition (M) (see Section 0). Actually, the implication

(P, 3 0) = (PP(0) - 0)
is an equivalent condition, since
PO(t)—~>0 forallte@

is obtained by translation and the uniformity from the boundedness of
the functional P - P"(0) for P e Cg gz, (G).

If we require only that P, 30 implies P"(t) > 0 for all ¢t €@ pro-
vided the A-norms of P, (i.e. ||13,,||1) are bounded, then we obtain a suffi-
cient (and necessary) condition for the function y on E,UE, taking the
value 0 on E, and 1 on E, to belong to B(E,VE,) — the uniform closure
of B(E,VE,). That is a consequence of Theorem 6 in [6] which asserts
that a bounded function fon A < I'is inTA) if and only if (the necessity
being very easy), for every sequence of measures A, € M(A4), bounded

in variation norm, the uniform convergence 1, =3 0 (on @) implies
| far,—~o0.
r

Thus, if we put 4 = E,VE,, f = y and if we choose 4, equal to the
measure (with finite support in F,UFE,;) whose Fourier transform is
P,(t+-), the statement above appears.

Two sets E, and E, in I" are called weakly harmonically separated

if P,=30 and Ilj’,.lll <1 imply PV =3 0. From the statement just proved
it follows that a necessary condition for E, and FE, to be weakly h.s. is

that y e B(E,VE,). A sufficient condition in the case of G compact is
obtained if we require moreover that E, or F, has the Schur property.
This means that weak convergence (i.e. pointwise bounded convergence)
in Cg, (Cg,) implies strong convergence. This can be the case not only
for Sidon sets (Y. Meyer, cf. [11]). On the other hand, Sidon sets are the

only sets A such that all 0-1 functions on 4 belong to B(A).
The author knows very little about weak harmonic separatione

There is essentially but one example of weakly h.s. not h.s. sets he can
give at this moment: ¥, an infinite Sidon set and F, its complement.

In fact, Drury’s theorem asserts that in this case y € B(E,V E;) and the
Schur property is implied by Sidonicity.
We do not know whether y € B(E,VE,) together with the Schur

property for E, or for E, make jointly a necessary condition for the pair
(E,, B,) to be weakly h.s. (P 1136)
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