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ON A CERTAIN NON-LINEAR EQUATION
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In the mathematical theory of the water percolation, the problem
of the infiltration of water from a cylindrical reservoir has been con-
sidered (cf., e.g., [1] and the bibliography therein). The investigation of
a class of the solutions of this problem leads to the one-dimensional inte~
gral equation of the form

(1) u? = K»u-+F.

The kernel K is a non-decreasing function vanishing on the left half-line:
with a jump at the origin. The function ¥ is specified in the sequel and is:
given by the physical interpretations of the considered problem. Only
non-negative solutions » of (1) are of interest, since from a physical point.
of view u is a surface of the percolating water.

This paper is a continuation of [4] and [6] in two directions. First,
we allow K to be a non-negative Radon measure with an atom at the
origin and vanishing on the left half-line. Second, we replace %? by Gou,.
where @ is a function defined on R, and having a strictly increasing deri-
vative with

G0) =G'(0) =0 and lim@ (x) = +oco.
Z~++00

There is a vast literature concerning non-linear integral equations,
notably [2] and [3] by Krasnosel’skij.

From now on we consider the equation
(2) Gou = Ksu+F
with given F, @ and K.

We suppose that

(i) K = ¢4+ u, where ¢ > 0, 8 is the Dirac measure and u is a non-
negative Radon measure such that u(R\(0, + o)) = 0;

(ii) @ is a function defined on B, = [0, + o0), and @' i8 a continuous.

strictly increasing function on R, such that
G0) =G ((0) =0 and lim G'(2) = + oo;

D>+ 00
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(iii) F is a non-decreasing function such that F(z) =0 for 2 <0
(may be F =0).

THEOREM 1. Equation (2) has precisely one solution in the class M
of locally bounded Borel functions on R, which are positive on B, \{0} and
vanish outside. Moreover, the unique solution 8 mon-decreasing.

For the proof of Theorem 1 we need 3 simple lemmas.

First we note that

0 for » =0,
L(@) = {w“G(a:) for 2> 0

is a strictly increasing function on R_, differentiable on B, \{0} and
having the inverse function L~' which, of course, is defined on the whole R, .

LEMMA 1. If u € M i3 a solution of (2), then
(3) L7'(e) <u(2) < Lo+ u((0, 2)+ (L' ()] ' F (@) for o> 0.
In fact, since G(u(z)) > cu(»), we get
[u(2)]"'G(u(v)) =06 for 2> 0,
and so the left-hand side of (3) holds. Let
@(x) = supwu(s).

8¢e(0,7)
We have
G(u(s) < p(@)[o+p((0,8)] +F(s) for s€(0,2).
Hence
Gp(@) < () [e+u((0, 2])] + F ()
and

[p(@)]7'G(p(@)) < ¢+ u((0, 2]) + [p(2)] " F(a).
Therefore, by the left-hand side of (3), we have
[p(2)]7'@(p(2)) < 0+ u((0, 2])+[L~' ()] F(@) for z> 0,

which is the right-hand side of (3).
LeMMA 2. The function

H(z) =G(x)—cx for z e[L™"(c), + )

has the inverse function H™' which is defined in R,.

This follows from H(L™'(¢)) =0 and from the fact that H'(z) =
@ (z) —c is positive for > L~'(e).

LEMMA 3. Far every b > O there exists a B, > 0 such that

1
[emaun << (6 (L7 @) —e]  for 6> o
[0,0]
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Proof of Theorem 1. Existence. Let

i L for <0
f@) = {L"(c) for z > 0:
and

o) = {0 for #<0,
- L“(c-{—y((o, o)) + [L“(o)]".li'(w)) for 2> 0.

Consequently f, f e M. For f € M, by Lemma 2, we define the operator
T as B

0 for 2 <0,
(4) T(NH(z) = {H—l((”*f)(m).*.ﬂ'(m)) for # > 0,
and we see that
(8) T(f)(@) = f(=)
and

T(f)(x) <f(z) for all .

For every natural number n the function I™(f) is non-decreasing.
Hence T"(f) € M. We consider the following sequence of functions:

(6) U, = f, Uppr = T(u,).

For f,,f, € M satisfying the inequality f,(») < fs(¢) for all ze R
we have T(f,)(¢) < T(fs)(x) for all « € R. Hence, by (5) and (6), we get
%, 1(7) = u,(2) for all x € R. Moreover, by the inequality

f@ < T (@) < T(H@) < fl@),
we obtain
u, () < f(z) for every natural # and o € R;

consequently, the sequence u,(x) is convergent for every » € R. Let

u(») = limw, ().

N-»00

It is clear that « is non-decreasing and belongs to M. By (4) and (6),
u satisfies (2). .
Uniqueness. Suppose first that the non-decreasing function
r(@) = L™ e+ u((0, 2]) + [L™"(0)]"'F (%)) — L~ (o)
is positive for » > 0. Let %, % € M be two solutions of (2) and let b be
a positive number. For « € (0, b] we have

(M) (@) —w(@)] < [@ (L7 0) —o] " dy(w, B) [ #r(m —s)du(s),

(0,z}
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where
(8) dy(w, @) = sup e~P[r(8)]" " u(s) —u(8)]
8€(0,b]

and g is a positive number. From (7) we obtain the following inequality :

(9)  lu(@)—u(@)| < [¢ (L7 (o) —e] " dy(u, W™ r(z) [ e~ ap(s).

[0,2}

From (9), by Lemma 3, we obtain
1
lu(w) —a(x)| < Edb(u, u)e’*r(x) for B> B,.

We get d,(u, u) = 0, so, by (8),

sup |u(8)—u(8)] =0
8¢(0,b)

and the uniqueness follows.

If, however, r(z) = 0 for € (0, a], then u(x) = L !(¢) for = € (0, a].

THEOREM 2. If u is absolutely continuous with respect to the Lebesgue
measure and F is continuous, then the solution u € M of (2) is continuous
on R _\{0}.

Proof. If u is absolutely continuous with respect to the Lebesgue
measure, then, by the Radon-Nikodym theorem, equation (2) can be
written in the form

(10) w(@) = H“( [ uw(@—s)g(s)ds+F(z)) for 2> 0,
[0,z]

where g is a non-negative Lebesgue locally integrable function. Since
u € M is locally integrable, the function

J wle—s)g(s)ds
[0,z]

is continuous for # > 0. Consequently, by (10), 4 is continunous on B \{0}.
The next theorem gives a dependence of the solution of (2) on 7.

We suppose that functions F; (j = 1, 2) satisfy (iii) and that one of these
functions is positive on B\ {0}. Let u; € M be the solution of the equation

G(u) = (ed+p)su+F, (j=1,2).

Let
!F(m) = max (Fl(w)a Fa(w))

and
w(@) = L™ o+ u((0, 1)+ [L7*(6)]* F(2)) — L™ (o).
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THEOREM 3. For b > 0

(11) sgl:}lul(a?)—uz(s)l
< 2[6@ (L7 (c) — o]~ exp [Byb] w(b) sup [w(8)]7}|F,(8) — Fs(8)],
where B, 18 a8 in Lemma 3. '

Proof. As in the proof of the uniqueness we have
(12)  u (@) —us(@)]

< 5 XD B,010(0) 3y (13, ) + 6 (E(0) — ] 1P () — Fiy(a)

for » € (0, b], where
dy (%, %g) = SUP exp [ —By81[w(8)] 7" |u1(8) —ua(8)].
8e(0,0]

Since d,(F,, F,) is finite, from (12) we get

- ) -
By (17 a) < 5y () ) + [@ (L7 (0) — 0] "3, (Fy, Fy),

and hence _
dy (U, %g) < 2[G' (L72(0)) —0] 7' 3y (Fy, Fy),

which, by the inequalities

exp[ —pf,b]1[w(b)]™" E(%Ib)llul (8) —us(8)l < ab(“u Us)

and
ab(Fu F,) < .2(1:1;] [0(8)]1 7} 1F1(8) —Fy ()|

implies (11).
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