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EVERY PARACOMPACT C™-MANIFOLD MODELLED
ON THE INFINITE COUNTABLE PRODUCT OF LINES
I8 C™-STABLE

BY

Z. OGRODZKA (WARSZAWA)

Let M be a C™-manifold modelled on a linear metric space E. We say
that M is C™-stable (m > 0) if there exists a C™-isomorphism(!) of M
onto M x E. The C°stability of manifolds is also referred to as the topolo--
gical stability, and the C™-stability with m > 0 as the differential
stability.

The topological stability of manifolds modelled on infinite dimen-
sional separable Fréchet spaces was established by Anderson and Schori
[2], and this result has been later extended by Schori [9] to a wider class
of models including non-separable Hilbert spaces. The C™-stability of
all Hilbert manifolds, and also some Banach manifolds, is the result of
combined efforts of Burghelea and Kuiper [4], Moulis [8], Eells and Elwor-
thy [5] and Elworthy [6]. It seems, however, that their technique is not
applicable in the case of differentiable manifolds modelled on Fréchet
spaces (%), which do not admit continuous norms. The simplest space of
this kind is s, the infinite countable product of lines.

In this paper we establish the differential stability of paracompact
manifolds modelled on 8, using an argument which is a suitable adapta-
tion of the Anderson and Schori method. The theorem is stated and
proved in Section 4, in foregoing sections preparatory constructions are
performed. .

The author is very grateful to C. Bessaga for valuable discussion
during the preparation of the paper.

(1) By a C™-isomorphism for m > 1 we mean a diffeomorphism of class C™,
and C°isomorphisms are homeomorphisms.

(2) It is not commonly agreed what is the natural notion of differentiability
in a Fréchet space; the notion of differentiability we use is defined in Section 1.
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1. Preliminaries. Let R denote the real line regarded as a metric
space with the metric

o(t, 1) = t—'|/(L+t—1']).

By N we denote the set of positive integers; [1, oo] is the one-point
compactification of the half-line {t¢R: ¢ > 1}. For any topological space Y,
we denote by Y¥ the product of 8, copies of Y labelled by positive in-
tegers.

Let s = RY be the Fréchet space of all real sequences z = (z(n))
with the coordinate-wise linear operations and with the topology defined
by the system of pseudo-norms

), = o)+ ... +lx@) (¢ =1,2,...).

We use the following pseudo-metrics on s:
dy(@, @) = D 278(2(3), 2’ (3))) (0 =1,2,..., o).
i=1

Obviously, d, is a metric compatible with the topology of s.

We also deal with the product space s ; vectors of sV are sequences
Yy = (y,), where y, = (y,(i))eRY =s. Clearly, s and s are linearly
homeomorphic; by the standard isomorphism from s onto sV we mean
the map o defined by

o(@) = (),  where y,(i) = a(2""'(2i —1)).
For any keN, we define
Pr: sV —>s* and m,:s—>RF
by the formulas

Pi(¥) = Yay oy Yp)  for y = (y;)es™
and

me(z) = (2(1),...,x(k)) for & = (x(i))es,

respectively.
Let y = (y,)es” and keN. Then y, is called the k-th vector coordinate
of y, and the x(k) with = ¢~ '(y) is called the k-th scalar coordinate of y.
For every vy, y'es", ne NU{co}, we write

(1) (Y, y') = dof0™'(y), 071 (¥)).

Let X be a Fréchet space (i.e. a locally convex complete linear topo-
logical space). A set & of pseudo-norms for X is said to be fundamental
if the family {{zeX: a(x) < €}: aes#, e > 0} is a base of neighbourhoods
of zero in X.
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In this paper we use the following notion of differentiability :

Definition 1. Let £ and F be Fréchet spaces with fundamental
systems of pseudonorms & and 4, respectively; let U be an open subset
of E and let me NU{oo}. A map f: U—F is said to be of class C™ if, for
every zeU and k < m+41, there is a continuous k-linear operator a,(z):
E*—F such that for each feZ# there exists ae o/ with the property

. 1 \)
lim A Eh—s@ = D, atai) <o,

‘where = (h,... el”, and suc a e ma
here h* = (h, ..., h)eE*, and such that th P
(hyy «ooy by ) >0y (2) (Ryy ...y By)

is continuous on E¥*x U for each k < m+1.

If A ijs an arbitrary subset of F and f: A—F, then f is said to be of
class C™ provided that it extends to a map of class C™ on an open neigh-
bourhood of 4. By a C™-diffeomorphism we mean a one-to-one map of
class C™ whose inverse is also of class C™.

Remark 1. It is clear that if f is a differentiable real function on s,
then f depends locally on finite number of coordinates; a map ¢g:U—>s
is differentiable at a point y if and only if =,f is differentiable at y for
k=1,2,...

Definition 2. Let V and Z be topological spaces and 4 a closed
subset of V. Write (V xZ), = (VNA)xZUAd;let p: (VxZ),—~V be the
collapse map: p(v,2z) = v for (v,2)e(VNA)XZ and p(a) = a for aecA.
The set (V x Z), will be regarded as a topological space whose topology
is determined by the base consisting of all open subsets of (VN A)x Z
and of all sets p~'(U), where U is an open subset of V. Spaces (V x Z),
will be called reduced Cartesian products.

2. Existence of smooth steering functions. Any continuous function
A:8—[1, oo] such that A(x) = A(«’), whenever A(z) < n and =, (x—z') = 0,
is called steering. The steering function A is said to be smooth if 1|8\A"!(o0)
is of class C°. A function p:sV—[1, oo] is called steering provided that
poo is a steering function on s.

A steering triple is any triple (W, o, 1), where W is an open subset
of ¢V, and o and A are steering functions on sV such that

(1)  o(y) = A(y) = oo for all yes™\W,;

(2) if A =9 ' (c0)NW and B = A"*(o0)NW, then A =« B and B\ An
NW = B\ 4;

3) 2> 4/d_(y,s"\W) for all yeW;
(4) o| L =A|L, where L = {yesV:d_(y, s"\W) < d,(y, B\ 4)}.
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The symbol d (-, ‘) in formulas (3) and (4) denotes the distance
between a point and a set induced by the metric d, on sV defined by (1)
from Section 1.

PROPOSITION 1. If 1 i8 a smooth steering function on s and A is a closed
subset of 8, then there exists a smooth steering function ¢ such that o|A = A|A
and o(x) < oo for all xes\ A. If A is a closed subset of 8, then there exists
a smooth steering function u on s such that 2*® > 4/d_ (x, A) for every xwes,
and p~'(o0) = A.

Proof. For any neN, § >0 and D c s, write

0,(D, 6) = {wes: d,(z, D) < 6}.
Now, we define the sets
X, = {wes: A(x) < n},
Up = X,10(8N\0,(4,1/n)) and A4, =A4nX,.

It is easy to see that, for every neXN,

A, = Ay, U, =0, < IntU,,, and A4,,= Zn+l < Upyre

We construect, by induction, a sequence of ¢*-maps

0n: 0,(U,, 1/20)—[1, n+4 2]
which have the following properties: )

(an) on(®) = A(w) for we0,(4,,,,1/2n),

(b,) on(x) = gx(x) for xe U, with k< n,

(¢n) (%) =n for ze U\ Uy

(d,) en(@) = m+1 for 2¢0,(U,, 1/2n)\ U,,

(en) Qn(a’) = Qn(wl) if nn(m) = nn(w’)'

Let f,: BR—~[0, 1] be a function of class C* such that .

7‘1(01,(1‘12,‘1/2)) c ffl(l) a‘I}d supp f; < “1(01(A2’ 1))

For all 2¢0,(U,,1/2), we write

01(2) =_f1(7‘1(w))}~($)+2(1“‘f1(7‘1($)))-

Then the function p, satisfies conditions (a;)-(e,).

Suppose now that we have constructed functions o, with properties
(az)-(ep) for all k< n—1. Let f,: R"—~[0,1] be a function of class C”
such that

(0 A1V Uyoyy 1/20)) < f1(1)
and
Supp fo < %a(0n(4ns1V Ussyy 1/(20—2))).
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The function
9n: On(4, 1,V U, 1, 1/(20—2))>[1, n+1],
given by
Ax) for x€0,(4,.,,1/(2n—2)),
9a(@) = lg,,_l(w) for 20,(U,_,,1/(2n—2)),

is well defined and continuous by virtue of (a,_,). Next, for 2¢0,(U,, 1/2n),
we let

9n (7 (@) fu (@) + (n+1) (1 = fo (70 (2) ))

for #¢0,(4,,,9 U,_;,1/(2n—2)),
n+1 for £¢0,(4,,,V U,_,,1/(2n—2)).
We have f,(7,(x)) =0 for 2¢0,(4,,,9U,_,,1/(2n—2)). Therefore,

the function g, is continuous. Also it is easy to check that g, is of class C™.
Since

Qn(w) =

s\ U U, ={red: A(x) = oo},

neN
the function g, defined by

B onl(x)) for zeU,,

oo for zes\ U U,,
neN

o()

is of class C* and it is an extension of the function 4| A. From properties
(ag)- (e;) it follows that g is a steering function. This completes the proof
of the first assertion of the proposition.

To establish the second assertion we let u = 2+ o, where o is the
function constructed above for the set 4 and for 1 = oo.

3. The displacement homotopy and partial flattening maps. In this
section we shall introduce certain auxiliary maps of reduced Cartesian
products and establish some properties of these maps.

Definition 3. A homotopy f;: sV x s—>s87, 1 < t< oo, is called a smooth
displacement homotopy if

(1)  the map p,(f;(y, ) = pr(y) for keN,t >k, and f(y, ) = y for all
(y, ) es™ x 8,
and

(2) the map f(y, x,t) = (f,(y, ®), 1) is a C®-diffeomorphism of sV x ¢ x
% [1, oo] onto sV x [1, oo].
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The existence of smooth displacement homotopies is asserted by

Lemma 1.
Suppose that g:s¥—>[1, co]. If A = p7'(o0) and {fi};cice 18 2 dis-
placement homotopy, then let

fo: (s¥ x 8) 48N -
be the map defined by the formulas

(3)  fol¥, @) = fo) (¥, ) for y¢A, and f,(y) =y for yeA.
Suppose that (W, g, 1) is a steering triple, A = Wnp~!(o0), and
B = Wn A !(o0). The fundamental role in the proof of the stability theorem
is played by the following partial flattening maps:
fitof,: (W xs8)—~(W x8)g.

Differentiability properties of these maps are discussed in Lemmas 2-5.

LEMMA 1. There exists a smooth displacement homotopy {fi}i<icoo
on the space s~ x s.
Proof. Let a: R—[0, 1] be a function of class C* such that a(t) = 0

for t< 0, and a(t) =1 for t>1; let b(t) =1—a(t) for teR. We write
foly,x) =y and, for n<t<n+1,
fn+t(y7 (.U)
== (?/17 ey Yy b2+ a() Yy a@B)T—D (D) Ypi1y — Ynizs —Yn+3y )
It is easy to see that the homotopy {f;}1<i<.. has the required prop-

erties.

LEMMA 2. Let o be a smooth steering function on s and let A = ¢~ ( o).
Then F = f, is a homeomorphism of (s x a), onto s and has the properties

(4) F(2) =z for zeA,
(3)  DeF(y, @) = pi(y) for k< e(y),
(6) F|(s"\NA)xs is a C®-diffeomorphism.

Proof. The map F is continuous. In fact, if y*es™ with limy* =
yebd A and x* are arbitrary points of s, then k

Lim F(y¥, o) = lim f,n (%, #*) = y.
k k

By condition (1) and by the definition of steering functions, we have
o(F(y,z)) = o(y) for gll (y,x)e(s"\A)xs. Therefore, the map F~':
sV >(s" x s), exists and is given by the formula

Y for yed,

F) = Yy, e(y)) for yes¥\A.
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Now, by the definition of the reduced product topology, it follows
that F~! is continuous. Finally, the restrictions F|(s¥\ 4)xs and
F-1|s"\ A, being compositions of C®-maps, are of class C=.

LeMMA 3. Suppose that u, and u, are smooth steering functions, and
A; = p;' (), F;=f,: (sNxs)Aj—>sN for j =1,2;

U is an open subset of ", and ¢ is a C™-diffeomorphism of U into s~ such
that

(4,0 U) = A,ne(U).
Let

@: (U x S)Alr\U_>(¢( U) x 3)A2n¢(U)
be the map defined by the formula

~ ((P(y)r .’17) "’f z = (y, w)‘(U\Al) X8,
®(2) = .
o (?) if zed,.

Then the map G = F090 Fi' | Fy((U X 8) 4,~p) i8 @ C™-diffeomorphism
of Fi((U X 8) 4,~v) Onto an open subset of s™.

Proof. By Lemma 2, F, and F, are homeomorphisms. Therefore, G
is a homeomorphism. Observe that (UN\A4,) xs and (p(U)\4,)xs are
open subsets of (s¥\A4,)xs and (s"\ A4,)xs, respectively. Hence
F,[(UNAy) xs and F,|(p(U)\4,) xs are C™diffeomorphisms. Clearly,

(pxid)[(UNA;) xs = ¢|(UNA,) xs

is a C™-diffeomorphism. Therefore, G |F,((U\ 4,) X s) is a O™-diffeomor-
phism.

Moreover, F,(z) =z for 2zeA,NU and F,(z) =2 for zed,Nne(U).
Thus G(y) = ¢(y) for yeA,Nn U, whence G|Int(4A,NnU) is a C™-diffeo-
morphism.

Now, assume that yebdA4,. Then

(%) for every keN, there is a neighbourhood U,># such that =, G(y)
= m,(y) for ye U,.

This is a consequence of the fact that

lin_l l‘l(Fl(?l‘)) = liH} #2(‘;’1771(?/)) = oo

vy [ e’}
and that every scalar coordinate of a differentiable map on s depends
locally on a finite number of scalar coordinates of the points.

Using property (*) and the fact that ¢ is a C™-diffeomorphism, one
easily checks that, for every k < m4 1, the k-linear operators a,(y) of
Definition-1 exist for all ¥ in a neighbourhood of § and depend continuously
on y.
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The same argument can be applied to establish the differentiabi-
lity of the map G~'.

LEMMA 4. Suppose that (W, o, 1) is a steering triple, A = o~ '(c0)NW
and B = 2"'(o0)NW. Then the map

H = filof | (W X 8) 4
48 & homeomorphism of (W x 8), onto (W X 8)p and satisfies the conditions

(1) H(z) =z if p(2)e AU(WN\O), where C is a closed subset of s~ such
that BNA <« C c W,

(8) HI|(WNA)xs\H '(B) is a C>-diffeomorphism;
(9) H|IntH '(B)\ A is a C®-diffeomorphism.

Proof. By Lemma 2, fi'of, is a homeomorphism of (s x 8) 4N\ W)
onto (sV x s) BuV\w)- Moreover, f, carries (W x s), onto W, and f, carries
(W x 8)p onto W. Therefore, H is a homeomorphism of (W xs), onto
(W x 8)g.

Conditions (8) and (9) follow immediately from Lemma 2.

To establish (7), write

C = {yesV:d,(y, B\ A) < 4d,(y, s"\W)}.
If 2e(Wxs8), and p(2)eW\C(, then

1 .
doo(p(z)’ SN\W) < Zdoo(p(z)i B\A)'
By condition (3) of Section 2 and by property (5) of Lemma 2, we have

1ol Fo(2), D (2) <3 A B(2), £\ WH).
Hence, )
fol@)eL = {yes¥: d(y, "\ W) < d.(y, B\ 4)}.
Thus, by condition (4) of Section 2,
2(p(fo(2) = e(p(fo(2)
and this gives
H(z) = fi'of,(2) = fy'of,(2) = =.

4. Local flaitening of manifolds. The stability theorem.

Definitions. Assume M is a C™-manifold modelled on a Fréchet
space Y, i.e. M is a paracompact topological space equipped with a differ-
-cntiable structure given by an atlas {U,, ¢,},cs, Where {U,},.., i an
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open cover of M, and, for each aes, ¢,: U,—~Y is an open embedding
such that gzop;': ¢,(U,NUz)—Y is a C™-diffeomorphism.

A pair (V, y) is said to be a regular chart if y: V—Y is a C™-diffeo-
morphism onto an open subset of Y and y extends to a closed embedding
of U into Y. A collection of regular charts {Vy, ys}s.4 sSuch that {V}s. 4
is a cover for M is said to be a regular atlas for M.

A cover of M is called star-finite if each member of it intersects only
finitely many members of the cover. An open cover {V;}s. 5 is a refinement
of the cover {U,},. if each V; is contained in some U, . An open cover
{V3aew i8 a shrunk-refinement of the cover {U,},., if V, ¢ U, for each
aes.

ProrosITION 2. Every connected paracompact C™-manifold (0 < m < o)
modelled on the space s admits a countable regular ailas.

Proof. Since M is connected paracompact locally metrizable and
locally separable, it follows that M is metrizable and separable (see [10],
p. 111, and [7], Chapter 4, Section 4, Theorem 5). Therefore, for every
open cover {V;}; g of M, there is a shrunk-refinement (see [7], Chapter 5,
Section 1). Also every cover of M admits a star-finite refinement (see [7],
Chapter 5, Section 1, Theorem 4).

Since each point z es has a base of open neighbourhoods diffeomorphic
to the whole s, we conclude that M admits an atlas {V,, y,},.~y such
that vy, (V,) = s (remember that M is separable). Let {W,},.» be a shrunk-
refinement of {V,}. Obviously, {W,, v,|W,},.~ i8 a regular atlas for M.
Let {U;};.y be a star-finite refinement of {W,},.» and let {U;, ¢;};.x be
the corresponding atlas, i.e. ¢; = v, | U;. Thus {U;, ¢;};.x has the prop-
erty required in the proposition.

LEMMA 5. Let {U;, ¢;};cn be a regular star-finite atlas on a C™-mani-
fold M and let {V};.n be a shrunk-refinement of the cover {U};.n. Write

W;=UV; forieN and W, =9.

i<i
Then there are homeomorphisms g;: M X 8—(M X 8)z, such that
. (1)  for each m there exists k with g;(2) = g,(2) if j = k and p(2)eU,,
(2)  g; 1M xs\g; (W,) is a C™-diffeomorphism,
3)  g:lg7Y(W,) is a C™diffeomorphism for all ieN.

Proof. Let us take a family of steering triples {(¢;(U;), oy A)}ien
such that

(W10 Uy) = 7' (0)Ngy(U;) and @ (W;nT;) = 47 (00) Ny (Uy)

§ — Colloquium Mathematicum XXVIII.1
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(steering functions satisfying these conditions exist by Proposition 1).
By Lemma 4, each map

H; = fz—,-lofg,-|(%( U;) x 3)¢,-(W,-_1nv,-)

related to the triple (p;(U),e; 4;) carries (p;(U,) X 8)p,%;_ynvyy ODO
(p:(Us) X 8)puw,nu, aDA has the properties

(4)  Hi(z) = 2 it p(2)e@s(Wio N TU)U(pi(U)\Cy), where C; is a closed
set in sV such that ¢;(V;) < C; < 9;(U;);

(6) H;lg(UNW,_,) xs\NH; (V,) is a C™-diffeomorphism;
(6) H;|H;'p:(V\W,_,)) is a C™-diffeomorphism.
Define the maps h;: (M X 8),_,—(M X 8), by the formula

B ) ¢iloHop,(2) if p(2)eU;xs,
(2) =
' 2 if p(2)¢U,;xs.

Obviously, h; is a homeomorphism and
(7) k| (M\W,_,) x s\h;(V,) is a C™diffeomorphism,
(8) kAW (V,\W,_)) is a C™-diffeomorphism.

We shall show that g; = h;o ... ok, have properties (1)-(3). Condi-
tion (1) is a consequence of (7) of Section 3 and of the fact that the cover
{U};.n is star-finite. Condition (2) follows from (9) of Section 3 and the

fact that hj_l(...(hl(Mxs\g;‘(W,-))) ) is an open subset of the set
(MN\W;_;) x s\h; (V;) for j<i.

To establish (3) take any point Zeg;'(W,). If g;(z) ¢bd V; for all j <1,
then, by (7) and (8), g; is a C™-diffeomorphism in a neighbourhood of z.
In the other case, let k denote the smallest integer j < ¢ such that g;(2)e
ebd V;. Then, by (7), g;_, is a ™-diffeomorphism in a neighbourhood of z.

Near the point g,_,(Z) the-maps ky, ..., h; either are equal to the identity
or are of the form

hj = gj o Hiop; = ¢ o(f3 o f,,)09;.

Therefore, the map h;,o ... ok, can be expressed as a composition of
maps each of which has one of the forms

(9) e, (#n09; )Ofi" s fo0m,  @ilofi

By Lemma 3, the maps f, o(¢,0; )0 +| are C™-diffeomorphisms in
a mneighbourhood of the point fej(&j(gj_l(é))). Similarly, the remaining
maps in (9) are also diffeomorphisms. Therefore, each g; is a C™-diffeo-

morphism in a neighbourhood of z. Remembering that z was an arbitrary
point of g;'(W;), we obtain (3). This completes the proof of Lemma 5.
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THE STABILITY THEOREM. Hvery paracompact C™-manifold M modelled
on the space s is C™-diffeomorphic to M X s.

Proof. Without loss of generality we may assume that M is connected.
By Proposition 2, there is a regular star-finite atlas {U,, ¢;};ex on M.
By relabelling the cover {U,};.ny, We can make it chain-finite ordered,
i.e. there is no infinite subsequence of indices k, < k, < k3 < ... such that
U," Uy, ., #9forall neN (cf. [1], Theorem 2). Let {V:};ex be a shrunk
refinement of {U,}. Write
W,=UYV; forieN and W, =9.

i<i

By Lemma 5, we obtain a sequence of homeomorphisms

9:: M X 8—>(M X 8)7,.
The map '
g = limg;

is the required diffeomorphism of M X s onto M. By property (1) and the
chain-finiteness of the cover {U,}, there is a k such that g;(z) = g,(2)
for j > k, whenever p(2)e U,,. Therefore, g is well defined and is of class C™.
Since every g, carries M X s onto (M X $)5, and since {V,} is an open cover
of M, we conclude that g(M xs) = M and also we have & = g(g~'(2))
for every x ¢ V;. Since g~' restricted to every open set U, coincides with g;*,
we conclude that ¢ is onto M and ¢! is of class C™. -
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