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Introduction. The set of functions
(1) f,(x) =nx (mod1l), n=1,2,...,

defined on [0, 1) and regarded as a subspace of the Tychonoff cube [0, 1](%!
becomes dense when projected (by restriction) into [0, 1%, where E < [0, 1)
and E U {1} is independent over the rationals. This is a consequence of the
Kronecker multidimensional theorem, according to which if 1, x,, ..., x, are
independent over the rationals and U,, ..., U, are intervals on [0, 1), then
there exists an integer n such that

nx, €U,, ..., nx, €U, (mod1).

It was observed by Priestley [7] that if E is, in addition, of positive outer
measure, then the sequence f,|E, n =1, 2, ..., contains no nontrivial conver-
gent subsequences. Indeed, if n, <n, <... is a sequence of integers, then
according to the Hardy-Littlewood theorem (or an even stronger theorem of
Weyl asserting a.e. uniform distribution of n, x(mod 1)) the sequence ngx,
n; x, ... (mod 1) is dense in [0, 1) for almost all x, and clearly such an x can
be found in E, E being not of measure zero. This gives a stengthened version
of the known Hewitt—Marczewski—Pondiczery theorem, namely the existence
of a countable dense subset having no nontrivial convergent sequences in the
Tychonoff cube of weight continuum.

A question arises whether subsequences of the sequence (1) have an
analogous property, i.e, whether for any subsequence

lj;,k(X)=nkx (mOdl), ) <n <...

of (1) there exists an uncountable subset E of [0, 1) such that the set of
functions f,,klE, k=0,1,...,is dense in [0, 1]E. In particular, this concerns
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the sequences
Sp(x) = p*x (modl), k=0,1,...,

where p is an integer, p > 2.
A more natural setting of the problem is to consider, instead of (1), the
functions

(2 f,2)=z", n=0, +1, +2,...,

defined on the unit circle T= {z: |z] = 1}, i.e, the continuous characters of T.

It is known from the work of Hartman and Ryll-Nardzewski [3] that
the set of limit functions of a sufficiently thin subsequence of (2) is homeo-
morphic to the remainder fw\w in the Cech-Stone compactification fw of
the set w of natural numbers. This is true, in particular, for any sequence

3) fpk(z)=z’k, k=0,1,...,

where p is an integer, p > 2. More generally, it was shown by Strzelecki [11]
that this is the case if the sequence ny, <n, <... is lacunary, i.e., n ., /n
=Zy>1

The whole sequence (2) is far from having the property considered above
since it is dense in the set bZ of all characters of T and, in particular, dense
in itself. In fact, the closure of the sequence (2) in T7 coincides with bZ (see,
e.g., [4], Corollary (26.16)). Moreover, bZ is nowhere dense in TT and it is
well known that all the characters except the functions f,(z) = z" are non-
measurable. The corresponding nonmeasurable functions on the unit interval
were originally investigated by Sierpinski [9], [10].

In Section 3 it will be proved that for each set

_ff .
® = {fy: No<ng <:.}

of continuous characters of T there exists a subset E of T of cardinality
continuum such that the set

E: k=0,1,..)

is dense in TE. This means that the closure @ of @ in T7 (or, equivalently, in
bZ) is projected onto TE (by restriction). In other words, each function f: E
— T extends to a character in & = bZ.

Subsets of T having this property with respect to a given set @ of
continuous characters of T will be called ®-independent. The ®-independent
sets are the smaller. the thinner the sets @. The problem of the existence of ®-
independent sets which are “large” in the sense of measure or topology is
dealt with in Section 3. For

¢P= :fpk: k=0, 1,...}

the existence of @,-independent sets of cardinality continuum can be obtain-
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ed directly by modifying the theorem of Fichtenholz and Kantorovitch [1],
but our proof presented in Section 3 is based on a different method and
works for arbitrary infinite @, answering the question stated at the beginning.

1. Comments concerning the position of ®, in bZ. We shall describe in
some detail the position, in bZ, of the set @, consisting of the functions (3) as
well as the set @5 = @,\ P, of limit functions of (3).

Denoting by yx, the character of Z given by

4) 1 (n) =exp(2mint), nelZ,

consider the set B, of those functions in bZ which are equal to 1 on all
characters y, ., | >0, jeZ. The set B, has the structure of a closed subgroup
of bZ (in fact, the annihilator of the p'-roots of unity, / > 0) and coincides
with the intersection of the sets B,;,, | >0, jeZ, consisting of those
functions equal to one on a single character Xjypl- The function f, from (2) is
in B, iff exp(2mijn/p) = 1. This implies that fr€Byy iff k=1

Thus, the set &% is contained in B, and B,n®, = . Since B, is a
group, this clearly implies that B, is nowhere dense in bZ.

The set B = () B, of all those functions from bZ which are equal to 1 on
all characters (4) with ¢t rational is the connected component of the neutral
element of bZ (see, eg., [4]).

If there exists a prime factor of q which is not a factor of p, then the set
B, does not contain any limit functions of the sequence (3), ie. B,n®} = Q.

To see this, project T' onto the x,,-axis. Then all functions in B, are
projected into 1, while the functions f & are projected into the set of g-th

roots of unity from which 1 is removed (the fraction p*/q cannot be an
integer).

Since B = B, N B, for any two integers p and g, as a consequence of the
above observation we have

Bndr=0

for all integers p, p = 2.

We recall that a continuous map g: M — N is called irreducible if g (A)
= N implies 4 = M for each closed subset of A of M. We note that if E is
such that @* projects onto T® (by restriction), then the projection n: &%
— TE is far from being irreducible. Indeed, suppose A4 is a closed subset of
@* such that n(4) = TF and n|A: A — T* is irreducible (the existence follows
from the Zorn lemma). Since TE is separable, i.e., it has a countable dense
subset, the set A is also separable. Thus A is a separable subspace of the
space @} which is nowhere separable as a homeomorphic copy of fw\w.
Thus, A is nowhere dense in &}.
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2. Definition of P-independent sets. Let G be an abelian group. A subset
E of G is called independent if for any distinct elements x,, ..., x, of E and
any integers k,, ..., k, the equality

k k
xtoxr=1

can only occur if k; =... =k, = 0. This definition implies that an indepen-
dent set contains no elements of finite order, which makes our notion
slightly different from the independence considered in [4] (but consistent
with [2], V). Note that {x} is independent in G iff x has infinite order.
The independent sets can be characterized by the following extension
property:
(i) E is independent iff any function f: E — T extends to a character on G.
Indeed, if E is independent, then the formula

2Ot = £ L S ()

extends f to a character y on the group generated by E, and next y can be
extended to a character on G (see, e.g., [4], 24.12). The converse is clear.

The following observation will also be useful:

(i) If E is independent and a # 1, then card(E N Ea) < 1

To see this suppose x =ua, y =va, x #y; x, y, u, veE. This implies
xy 'ou~' =1.If u # y and v # x, then the four elements are distinct and we
arrive at a contradiction. If, eg, u =y, then xvy~2 =1, which is also
impossible.

Throughout the rest of the _paper we consider a locally compact abelian
group (LCA group) G. By G we denote the dual LCA group of all
continuous characters on G and by bG the group of all characters on G
endowed with the compact topology of pointwise convergence inherited from
TC. It is well known that G is dense in bG, the Bohr compactification of G
([4], 26.16).

We say that a subset @ of G is unbounded if it is not relatively compact
for the locally compact (Pontryagin) topology on G.

DerFINITION. Let & = G be unbounded. A subset E of G is said to be
&d-independent if any function f: E — T extends to a character contained in
the (pointwise) closure of @ in bG.

A subset of a @-independent set is P-independent. Also, if ¥ — @ G,
then every ¥-independent set is #-independent. In particular, any ®-indepen-
dent set is independent (see (i)). The converse fails in general.

ExampLE 1. Consider

®,={z"n=0,1,.. T
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and let

z=exp(2ni ¥ 2°).
n=1
The singleton {z! is not ®,-independent since Arg ¢(z) < 5n/4 for all p €P,.
On the other hand, 22'"2 is irrational, so z is of infinite order, hence

independent in T
The following example shows that the union of the & -independent sets

(p fixed) in the unit circle is not too large.

ExampLE 2. Let p > 2 be an integer. Then there exists a Borel subset A4,
of T such that

(a) the Hausdorff dimension of A4, is equal to one,

(b) 4, is disjoint with every & -mdependent set.

In fact let A, be the set of all zeT such that the sequence ", n>0,is
not dense in T. leen ¢ >0 we fix k> 1 satisfying the condition

log(p*—1)/logp* > 1—¢

and define D, to be the set of all z = e*** such that 0 <t <1 and there is no
2k-block of zeroes in the expansion of t to the base p,

[« o
t=ztj/pja ostj<p,
j=1

where in the case of two different representations the one with, say, infinitely
many zeroes is chosen. Clearly, D, = A,. We let C, be the set of all numbers
e2™, 0 <t <1, containing no block of zeroes of the form

tutr oo tmre (1 20).

We have C, c D,, and C, can be identified with the set of all numbers in
the unit interval in whose p*-expansion the digit O does not occur. Therefore

dimC, = log (p*—1)/log p* > 1—¢

and, consequently, dim4, = 1.

The sets C, belong to the class of Rajchman’s (H)-sets, which play an
important role in the problem of uniqueness of trigonometric expansions
(Rajchman [8]).

3. Existence of #-independent sets. Our aim is to obtain uncountable ®-
independent sets. The two methods presented below parallel the construction
of independent sets of transitive points in dynamical systems [5]. The first is
an application of Mycielski’s independence theorem in topological relational
structures [6]. Using his theorem, Mycielski obtained algebraically indepen-
dent sets (a notion slightly different from our G-i_ndependence in the case of
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abelian groups) of cardinality continuum in any connected locally compact
group G, cardG > 1 ([6], p. 144). Our case of P-independence seems to be
less straightforward because of the lack of a purely algebraic condition for @-
independence. The second method is based on transfinite induction and
resembles the well-known construction of the Bernstein set.

In order to obtain uncountable ®-independent sets for each &, we
restrict the class of groups by imposing the following condition on G:

(*) For every m # 0 the mapping f,: G =G defined by f,(y) = x™ is
continuous at infinity.

An equivalent wording is the following:

(«») For every m#0 the set f,7!(K) is compact whenever K is a
compact subset of G.

If G is compact, then G is discrete, so “compact” means “finite” in (**).
Therefore, for any compact G, () is equivalent to

A("‘"'"‘) For every m # O there are only finitely many characters of order m
in G.

The class of groups satisfying (») is vast. First note that every compact
monothetic group satisfies (). In fact, G is a subgroup of T ([4], 24.32), so
(*+%) holds. If G is any connected compact abelian group, then G is torsion
free ([4], 24.25), whence G satisfies (»+x). It is also easy to see that the class
of LCA groups satisfying (»*) is closed under direct products. Since ()
clearly holds for R", we infer by the structural theorem ([4], 9.14) that any
connected LCA group satisfies (»).

Note that if G is compact, then (***) is necessary for the existence of a
nonempty ®P-independent set for all unbounded @. In fact, suppose

®(m) = {xeG: " =1}
is infinite. Since
card {x(x): xe®(m)l <m

for each x €G, the singleton {x} is never @ (m)-independent.

We shall prove that (x*x) is also sufficient for the existence of uncount-
able ®-independent sets (Theorems 1 and 2).

From now on, G is an LCA group satisfying (x) and ¢ an unbounded
subset of G. We denote by dx the Haar measure on G. The measure of a set
A < G will be denoted by |A|.

The assertion of the following lemma is reminiscent of the mixing
conditions considered in [5].

LemMa 1. If feC(T) and geL!(G), then
lim {f(x(x)g(x)dx = [f[g.

X~ ®
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Proof. For a fixed g, the integral on the left can be viewed as a
bounded linear functional F, on C(T). Since ||F,|| < |lgll;, it suffices to prove

lim F,(f) =/ {9g

X—®o

for the linearly dense set of characters f(z) =z™ meZ. If m = 0, then clearly

F,(f)=(g=(f]g.
If m+# 0, then

F,()=g(™,
where g €C,(G) is the Fourier transform of g. Since

m_ 50

lim x~
xX—®

by (*), we obtain
lim F,(f) =0=[f g

 And S
as required.

The following lemma can be viewed as an extension of the Hardy-
Littlewood theorem:

LEMMA 2. Let U be an open neighborhood in T. The set
F(U)={xeG: (Vyed) x(x)¢U}

is nowhere dense and of Haar measure zero.

Proof. Clearly, F(U) is closed. Suppose V < F(U), 0 < |V| < c0. We let
g = 1y, the indicator of ¥, and 0< f <1y, 0# feC(T). Then

f(x(x))g(x) =0
for all ye®. On the other hand,
lim (f(x(x)g(x)dx=|V|{f>0

X—x

by Lemma 1. Since we may choose y€®, y — o, this is a contradiction.

LemMA 3. Let n>1. The set of all (x,,:.., x,) €G" such that some
f: (x4, ..., x,} =T cannot be extended to a character contained in the
pointwise closure of ® is of the first category in G".

"Proof. It suffices to prove that for any neighborhoods Uy, ..., U, from
a countable basis of T the set

FU,,...,U)
= {1, s XD €G™ (VD) (x(x1), -y X(x)€ Uy x ... xU,}

is nowhere dense. Suppose, to the contrary, that there are open sets
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,..., V, in G such t};ét
0<|V]<o and Vx..xV,cF(U,,...,U).

We let g; = l,,j and 0< f; < luj, 0# fjeC(T),j=1,..., n. Now argue as in
Lemma 2. If yed®, then

T £, (x(x))g;0x) =0,
j=1

while

foud ﬁ fi((x))gi(x)dx, ...dx,= [] [f;(x(x)g;(x)dx "jﬁl Vil|f;>0
j=1 -

j=1

as y — oo, a contradiction.

-Now we are in a position to apply Mycielski’s theorem on independent
sets in topological relation structures [6]. First define for each n>1 an
n-ary relation R, on G by letting (x,, ..., x,) €R, iff some function

fidxy, oo, %) =T

does not extend to a character belonging to the pointwise closure of &. By
Lemma 3, R, is of the first category in G". Moreover, the relational structure
R = (G, \Ry, R,, ...}) is closed under identification of variables since

(xl,..., Xiy xj,x,-+1,..., x,,)ER,,.H iff (xl,...,x,‘)ER,,

for any j (1 <j < n, n>1). Besides, G is dense in itself if an unbounded ¢
exists. Consequently, R satisfies the assumptions of Mycielski’s theorem [6]
asserting the existence of an independent set of cardinality continuum (which
can be chosen to be a dense countable union of Cantor sets if G is second
countable). Since independence in ‘R coincides with our independence defined
in Section 2, we have

TueoreM 1. Let G be an LCA group satisfying (). Then for every
unbounded ® — G there exists a ®-independent set of cardinality continuum. If,
in addition, G is second countable, then the independent set can be chosen to be
a dense countable union of Cantor sets.

Remark. If #*, k=1,2,...,is a sequence of unbounded subsets of G,
then by a slight modification of the above argument we may obtain a set of
cardinality continuum which is @*-independent for all k > 1 simultaneously.
Indeed, it suffices to consider the relational structure (G, {R*: n>1, k > 1}),
where the relations R%, R%, ... correspond to the family @*. In particular,
there exists a Borel uncountable set E T, &,-independent for all p > 2. An
analogous remark applies to Theorem 2 below.

Another method of constructing uncountable ®-independent sets is
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based on transfinite induction. For the remaining part of the paper, G is a
compact abelian group satisfying (x) and & is an infinite subset of G.

First note that if E is ®-independent, then it is either of measure zero or
nonmeasurable. Indeed, the translations Ea, a €G, are almost disjoint by (i),
so the inner measure of E must be zero. Our aim is now to produce
nonmeasurable &-independent sets. This will be achieved under additional
conditions, e.g., G metrizable plus the continuum hypothesis.

Denote by 4, .#, and .4~ the Borel o-algebra, the ideal of first category
sets, and the ideal of sets of Haar measure zero in G, respectively. If . = #
or .# =.4, then we consider the cardinal number

cov.f = min {card #: F < .#,@CeAB\5) Cc | D).

De.¥#

Clearly, N, < cov.f# < card G. Also note that if G is metrizable, then by
the well-known isomorphism theorems cov.f# is independent of G.

THEOREM 2. Let G be a compact abelian group satisfying (*) and & = G
be infinite. For any family
€ < B\(MHNA) with card 4 = min(cov .#, cov.4)
there exists an uncountable ®-independent set E such that EC # @ for each
Ce%.

Proof. Put y = min(cov .#, cov.#) and order % as {C,: a <y}. We
define a transfinite sequence x,, « <, such that x,€C, and {x,: a < B} is &-
independent for each f <y. To carry out the induction suppose {x,: a < B}
is ®-independent for some B <y. We shall find an element x; €C; such that
!x,: a < B) 1s still P-independent. First choose any 0<a; <...<a, <pf
(n finite) and neighborhoods U,, ..., U, from a countable basis in T By
inductive assumption, the set

Y= {xedﬂ (X (Xay)s s X (xa)) €U, x ... xU,,}
is infinite (we let ¥ =& if B =0). By Lemma 2, the set
Y(,, ..., 0, Uy, ..., Up) = {yeG: ty) is ’I’-independent}

is a dense G, of full measure. Since C;e#\.# or C;e#\ A and there are
less than y sets Y, the intersection

CpnﬂY(al,..., Ays Ul’ ceey U,,)

is nonempty. Choose any x; in this intersection. It is clear that for any
0<a, <...<a, <p and neighborhoods U,, ..., U,, U,,, we have

xﬂEY(al, coey Oy, Ul’ ceey Un)’
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so the set

{red: (x0x)), - x(x), 1(p) €U x .. xUpx Uy }

is nonempty. This proves that xs¢ {x,: « <p} and that {x,: a < B} is &-
independent.

CoroLLARY. If G is compact abelian and metrizable, G is infinite, and
cov.# =cov.# =20 then there exists a ®-independent set E such that
ENnC # Q whenever Ce#\(.# n.¥). In particular, E is nonmeasurable and
does not belong to the Baire c-algebra.

Note that cov .# =cov.¥ =20 is implied by the continuum hypoth-
esis.
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