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1. The following question (P 310) was raised by Erdos [1]: Let the
function f satisfy

(1) fle+y) = flx)+f(y)

for almost all pairs («, y) of real numbers (“almost all” to be taken in
the sense of Lebesgue’s plane measure). Is it true that there exists an
additive function % (i.e. a function such that h(x+y) = h(x)+h(y)
for all x,y) such that f(z) = h(x) for almost all « (“almost all” to be
taken in the sense of Lebesgue’s linear measure). In this note we shall
show that the answer is affirmative (see section 2), even if the assumption
is weakened by admitting, in the z-y-plane, exceptional sets of finite
measure (see section 6, corollary).

A partial result was obtained before by Hartman [2] who proved:
if § is a linear set of measure zero, and (1) holds for all z, y with x¢8S,
y¢8, then (1) holds for all z, y. (Actually it was this result by Hartman
that led Erdos to his question.) Hartman’s result directly follows from
ours (see section 3).

In section 2 we prove that the answer to Erdos’ question is affirma-
tive. This proof uses only a very small part of the algebraic and measure
theoretical properties of the real number system. Therefore, we can
use it as a pattern for generalization in different directions (sections
4 and 6).

After this paper was written, Erdés has informed the author
that a positive answer to his question P 310 was also given by
W. B. Jurkat (in [3], without proof).

Notation. The set of real numbers is denoted by R. If M < R,
and if z is a real number, then x4+ M denotes the set of all x4 m with
meM, and x— M denotes the set of all x—m. Similarly, if ¥ ¢ EXR,
(xyy)eRXR, then (x,y)+N is the set of all (vx+n,,y+n,) with
(m1y n5)eN.



60 N. G. DE BRUIJN

2. Assume that (1) holds for all (#,y)¢N, where N =« RXR, u(N)
= 0. A set of measure zero in the z-y-plane has the property that almost
every line parallel to the y-axis intersects it in a set of linear measure zero.

In other words, there is a linear set M of linear measure zero such
that for every xz¢M it is true that (1) holds for almost all ¥ (note
that the exceptional y-set may depend on ).

Let # be any real number. Since u(M) = u(r—M) = 0, we have
M o (x— M) # R. It follows that x, R exists such that »,¢M, x—x,¢ M.
Therefore, f(x,4+y)—f(y) = f(x,) for almost all y, and f(x—x,+2)—
—f(z) = f(x—x,) for almost all z Putting 2z =x,+y, we infer
that

f(@+y)—f(y) = f(@,)+f(x—,)

for almost all y. Thus there is a uniquely determined function » with the
property that for every x it is true that

(2) f@+y)—f(y) = h(=)

for almost all y.

For every z, let K, denote the set of y’s for which (2) does not hold,
whence u(K,) = 0. If x¢M we also have (1) for almost all y, and it
follows that h(z) = f(x) (x¢M). It remains to be proved that h(zx) is
additive.

Take aeR, be R. We shall show the existence of w, 2 such that
simultaneously

(3) f(a+w)—f(w) = h(a),

(4) f(b+2)—f(2) = h(b),

(5) fla+b+w+2)—f(w+2) = h(atD),
(6) f(w+2) = f(w)+f(2),

(7) fla+b+w+2) = f(a+w)+f(b+2).

Each one of these equations holds for almost all (w, 2)e RXR. The
exceptional sets are, respectively, for (3): K, X R; for (4): RX K,; for (5):
the set of (w,2) with w+42¢K, ,; for (6): the set N; for (7) the set
(—a, —b)+N. Thus the set of (w, z) for which (3), (4), (5), (6) and (7)
hold simultaneously is non-empty, since its complement has measure
zero. Thus (3), (4), (5), (6) and (7) are compatible. It immediately follows
that h(a+b) = h(a)+ h(b). This completes our proof.

3. We now derive Hartman’s result from ours. Let § < R, u(8S) = 0,
and let (1) hold for all ¢S, y¢8. Since (8 X R) v (R X S) has plane measure
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zero, we infer, by section 2, that there exists an additive function A such
that f = h almost everywhere. Put f—h = k. Let T be the set of all «
with h(z) #20. Put U =T o S, whence u(U) = 0. Let a be any real
number. Since U v (a—U) # R, we can split a = a,+a,, a,¢U, a,¢U.
We have k(a,+ a;) = k(a,)+ k(a;) (since U o 8), and k(a,) = 0, k(a,)
= 0 (since U o T). It follows that k(a) = 0, and we have proved that
f(a) = h(a), for all a, i. e. that f satisfies (1) for all # and y.

4. The following generalization presents itself in a natural way.
Let G be an additive abelian group. Let 2 be a collection of subsets of G,
with the following properties:

(i) If S,e2, 8,2, then 8, v 8,eR2;
(ii) If 8,€0, 8, = §,, then S, 2;
(iii) G¢Q;
(iv) If ze@, S, then £+ S8eR2 and v— Se 2.

The elements of £ will be referred to as thin subsets of G. Note that
the complements G\ 8 (SeRQ) form what is usually called a filter.

‘A subset S of @ X @ will be called light if there exists a thin subset A4
of @ such that for every x¢A the set 8,, defined by

S, = {yl(ma y)‘S}

is a thin subset of G. Note that this definition is not symmetric in 2
and y, and that there are cases where interchanging # and y leads to an
essentially different notion. For example, take G = R and let 2 be the
collection of all sets with finite outer Lebesgue measure. Then the set
{(x, ¥)|0 <y < «} is light, but the set {(z, ¥)|0 < 2 < y} is not. On the
other hand, if a set § ¢ RX R has finite outer plane Lebesgue measure,
then 8§ is light in both senses. Similarly, if 2 is the collection of all sets
of first category in R, then the sets of first category in R X R are light.

Returning to the general situation of thin subsets of G, we remark
that if M is a thin subset of @, and xe@, then M o (x— M) # G; further-
more, M XG and G X M are light, and the set of all (w, 2) with w+2zeM
is light. Moreover, if N is a light subset of G X @, and if (a, b) eG X @, then
(—a, —b)+N is light. Finally, the set G X@ is not the union of finitely
many light sets. Bearing these remarks in mind, we can use the proof
of section 2 almost literally for proving the following theorem:

THEOREM 1. If f is a mapping of G into an additive abelian group H,
and if (1) holds for all pairs (x,y) except for a light subset of G X @, then
there exists a homomorphism h of G into H such that f(x) = h(x) for all x
exoept for a thin subset of Q.

5. The reasoning of section 3, applied to the setting of section 4,
leads immediately to the following generalization of Hartman’s result:



62 N. G. DE BRUIJN

THEOREM 2. If 8 is a thin subset of G, and if (1) holds for all x¢8,
y¢8, then (1) holds for all x and y.

6. A further inspection of the proof in section 2 leads to the remark
that the operation of taking unions of thin sets is carried out only
a limited number of times, and that the essential role played by the thin
sets is that these unions do not fill the whole space. Therefore it is
possible to obtain more precise quantitative results in the case of a mea-
surable group.

THEOREM 3. Let G be a measurable abelian group provided with a mea-
sure u, with 0 < u(@) < oo. It s assumed that u ts invariant with respect
to the transformations * —~ x+a and x — —x. Let a and B be finite positive
numbers satisfying

(8) 2a<pu(@), 38<au(@), 28<(u(@)—28/a)(u(G)—4B/a).

Let f be a function defined on G, such that (1) holds for all pairs (z, y)
except for a subset of G X G whose outer measure (in the sense of the product
measure) s at most f. Then there exists a function h, satisfying h(x+y)
= h(x)+ h(y) for all x and vy, such that f(x) = h(x) except for a subset of G
with outer measure < a.

Proof. The proof follows the pattern of section 2. Let N be the
exceptional subset of G x@ where (1) does not hold. Since the outer mea-
sure of N is at most B, there is a set M < G with outer measure at most a
such that for every x¢ M the set of y’s with (z, y)e N has outer measure
at most f/a.

Let « be any element of G. We have 2a < u(@), and hence M o
v (#— M) # @. We obtain z,eG with z,¢M, r—ax,¢M. It follows that
there is a function & such that, for every z, (2) holds for all ¥ with the
exception of a y-set of outer measure at most 28/a.

If x¢M, we have (1) with the exception of a y-set of outer measure
at most B/a. Thus, by 38/a < u(@), we have h(z) = f(z) for all z¢M.
It remains to be proved that h is additive.

We now try to realize the equations (3), (4), (5), (6) and (7). In order
to guarantee (3), w has to avoid a set of outer measure <2p/a. For
every w outside that set, z has to avoid a set of outer measure <4f/a,
in order to guarantee (4) and (5). In order to guarantee (6) and (7), the
pair (w, z) has to avoid a set of outer (product) measure <2f. It now
follows from (8) that (3), (4), (5), (6) and (7) have a common solution
(2, w). Hence h is additive.

COROLLARY. If u(@) = oo, and if f 18 any finite number, we can take a
arbitrary small without violating (8). Thus if (1) holds for all (x,y) outside
a set of finite outer measure, then f i3 almost everywhere equal to an additive
function, and, accordingly, (1) holds almost everywhere.
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