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1. Introduction. In this paper* we study the ideal and representation
theory of the algebra L'(@), where @ is a locally compact group which is
of polynomial growth (notation: @ € [PG]). We state the definition of the
class [PG] in Section 2.For further information concerning this important
class of groups we refer the reader to Palmer’s useful article [18], and to
the extensive bibliography of this article. In many cases our arguments
are presented in a more general Banach *-algebra setting. We consider
questions concerning symmetry, ideal theory, and representation theory
of Banach *-algebras that have basic properties in common with L!'(@),
@ € [PG]. The applications to L!(@) are immediate.

We mention briefly the most interesting of these applications (in
cach case @ € [PG]). Concerning symmetry, it is shown in Section 3 that
if & has a compact subgroup K with the property that every algebraically
irreducible Banach-representation of L'(G) is K-finite, then L'(@) is
symmetric. This result is more general than Gangolli’s theorem [7] that
L'(@) is symmetric if @ is a Euclidean motion group (our methods are
entirely different from Gangolli’s). Let y denote the largest C*-norm on
L'(@) and let 0*(@) be the completion of L!(@) in the norm y. In Section 4
we show that there is a close relation between the closed ideals of C* (&)
and the y-closed ideals of L'(@). Explicitly, if I is a closed ideal of C*(@),
then INL'(G) is dense in I in C*(G) (Theorem 4.2). This central result
leads to a structure theorem for L! (@) in the case where C* (@) has Hausdorff
structure space (Theorem 4.3) and to information about certain types
of closed ideals of L'(G).

In Section 5 the results of Section 4 are applied to the representation
theory of L!(@). It is shown that if G is GCR (postliminaire) and symmetric,
then every continuous irreducible Banach-representation of L'(G) with
y-closed kernel is finite dimensionally spanned and Naimark-related to
an irreducible *-representation of L!(@) (Theorem 5.1). Lastly, we prove
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that every continuous irreducible representation of a Moore group (see
[18]) on a normed linear space is finite dimensional. This extends to
a general setting results of Godement [9], p. 136-137, and Kaplansky
[13], Theorem 3.

Since this paper was written, the interesting paper [2] has appeared
with which there is some overlap.

2. Notation and preliminaries. Let A4 be a Banach algebra with norm
I-11,. For fe A, {f) is the closed subalgebra of A generated by f. We
denote the spectrum of fin A by sp(f; 4), and the spectral radius by o, (f)-
When A has an involution *, we let 4,, be the set of all self-adjoint elements
fin A (i.e. f = f*). In general, we will assume that 4 has an involution
and that there exists a C*-norm on A. Following Rickart in [20], p. 181,
we call a Banach *-algebra with a C*-norm an A*-algebra. An A*-algebra
always has a largest C*-norm which we denote by y,. We often drop the
subscript A in the notation given above when the algebra A is clearly
understood from the context. We use the notation A for the completion
of A with respect to the norm y. If £ < A, then F denotes the closure of
E in A.

Let X be a normed linear space. We usually denote the given norm
on X by [|-[lx. We let B(X) be the algebra of all bounded linear operators
on X and let F(X) be the set of all T € B(X) such that T has finite-
dimensional range.

A representation = of A on a normed linear space X is an algebra
homomorphism of A into B(X). The representation = is irreducible if =
is nonzero and the only closed n-invariant subspaces of X are {0} and X.
We call a nonzero representation = algebraically irreducible if {0} and X
are the only m-invariant subspaces of X. We often use the pair (=, X)
to indicate a given representation = with representation space X.

Let I be an ideal (considered as two-sided ideal) of A. Then I has
no ideal divisors in A if whenever J and K are ideals of 4 with JK < I,
then either J < I or K < I. If = is an irreducible representation of A,
then, by [13], Lemma 2.5, ker (x) (the kernel of x) is an ideal with no
ideal divisors in A.

For an ideal I of 4, let A /I be the usual quotient algebra of A mod I.
For fe A, we denote the residue class of A /I that contains f by f+1I.

The notations PRIM(4), PRIM*(4), PRIM(G), C*(@), and [HER]
are used as in [18]; here G is a locally compact (LC) group.

Let G be an LC group. If B is a measurable subset of G, then |B|
is the Haar measure of B. The group G is of polynomial growth (notation:
@ € [PG)) if for every compact subset K of G there exists a positive integer
m such that

|K®* =0(n™) a8 n —> +oo.
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For a particular function f on @, supp(f) is the smallest closed subset
E of @ such that f vanishes outside of E. When f, g € L' (@), we use fxg
for the convolution of f with g.

An algebra norm ||-|| on an algebra B is a @-norm provided that the
set of quasi-regular elements (or invertible elements if B has an identity)
is open in the |- ||-topology on B. We need the following facts concerning
@-norms:

(2.1) Let ||| be an algebra morm on an algebra B. Then the following
are equivalent:

(@) -1 78 @ @-norm on B;

(2) es(f) < Ifll (feB);

(3) es(f) =iim(llf”ll”“) (feB).

For the proof see [22], Lemma 2.1.

(2.2) Let A be an A*-algebra. A is symmetric if and only if y , i3 a Q-norm
on A.

Proof. A is symmetric means that sp(f*f; 4) is nonnegative for all
feA. By [3], Theorem 5, p. 226, this is equivalent to A being hermitian,
i.e. sp(f; A) being real for all fe 4,,. Statement (2.2) follows from [17],
Theorem, p. 523.

(2.3) If B i3 a Banach algebra, A is a subalgebra of B, and |:||z is
a Q-norm on A, then for fe A

bndry(sp(f; 4)) < bndry(sp(f; B)).

Proof. The standard proof for the special case of this result where
A is a closed subalgebra of B works in this more general setting (see [20],
Theorem (1.6.12)).

(2.4) If |-l i a Q-norm on an algebra B and I i3 a ||-|-closed ideal
of B, then ||f+Il|, = inf{|f—gll: g € I} is a Q-norm on A/I.

(2.8) If A is a (Jacobson) semisimple Banach algebra with dense socle,
then every algebra norm on A is a Q-norm.

Proof. A Banach algebra with dense socle is a modular annihilator
algebra by [23], Lemma 3.11. Then (2.5) follows from [22], p. 375-376
(note especially Lemma 2.8).

3. The question of symmetry. In the case where @G € [PG] and G
is compactly generated, it was shown by Pytlik in [19] that L'(@) contains
a dense *-subalgebra which is a symmetric Banach algebra. Also, L'(G)
has the same property when G is locally finite as T. Pytlik and J. Jenkins
have recently shown independently. It is natural to ask how this informa-
tion affects the question of the symmetry of L!'(@). That L'(@) need not
be symmetric even though @ is locally finite was shown by a recent example
in [7], Section 6. We state a general question.



304 B. A. BARNES

QUESTION. Let A be a Banach *-algebra and let B be a symmetric
Banach *-algebra continuously and densely *-embedded in A. Under what
conditions is 4 symmetric?

Certainly, given the hypotheses stated in the question, the assumption
that A is commutative suffices to imply that A is symmetric (in this case
it is enough to verify that, for every multiplicative linear functional ¢ on
A, ¢(f) is real for all f e 4,,). Also, it is not difficult to see that if B is
a densc symmetric *-ideal in A, then A is symmetric. A number of useful
criteria for symmetry of a Banach *-algebra are contained in Leptin’s
paper [14]. In particular, the preceding assertion is contained in [14],
Satz 1. We prove a result relevant to the question above which has appli-
cation to L'(@) for certain @ € [PG].

THEOREM 3.1. Let A be a Banach *-algebra and assume that B is a dense
symmeiric *-subalgebra of A. Assume that A has the property that if (x, X)
i8 any algebraically irreducible representation of A, then m(A)NF(X) is
dense in 7(A) with respect to the natural quotient norm on A [ker(n) ~ n(4).
Then A i8 symmetric.

Proof. Let (=, X) be an arbitrary algebraically irreducible represen-
tation of A. If f = f* € B, then by hypothesis sp(f; B) is real. It follows
that sp(f; A) is real. Since sp(f; 4) = sp(#(f); #(4)), we have

(%) sp(=(f); =(4)) is real for all fe B,,.

The property assumed on A implies that n(A) is a Banach algcbra
with dense socle (in the natural quotient norm). Then, by (2.5), the oper-
ator norm on %n(4) is a @-norm. Every operator in n(A4) is compact,
and so has totally disconnected spectrum. Using (2.3) we infer that
sp (= (g); ®(A)) is totally disconnected for all g € A. Let f = f* € A. Choose
{f.} = B with f) =f, for all » and |f, —fll, = 0. By (%), #(f,) has real
spectrum for all n. Also #(f,) = =(f), so that by a result of Newburgh
[16], Theorem 3, sp(n(f); #(A)) is real. But if 4 esp(f; 4), 1 # 0, then
there cxists an algebraically irreducible representation (z, X) of A such
that 1 esp(=(f); #(4)). Thercfore, sp(f; 4) is real.

COROLLARY 3.1. Let G € [PG] with G compactly generated. Assume
that G has a compact subgroup K with the property that every algebraically
irreducible representation of L'(@) is K-finite. Then L' (Q) is symmetric.

Proof. By [19], Corollary 7, L'(G) contains a dense symmetric *-sub-
algebra. Then the result follows from Theorem 3.1 and the proof of Theo-
rem 4.5.7.1 in [21].

Corollary 3.1 is more general than Gangolli’s result [8], Theorem A.
Another symmetry result is given in Corollary 5.2.

4. Locally regular algebras. Let A be a commutative Banach algebra
with carrier space @ ([20], p. 110). The algebra A is regular if, for every
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closed set I'< @ and a point w e ®\I', there exists an element fe A
such that f(@) = 0 for all ¢ € I" and f(w) # 0 (algebras with this property
are called completely regular in [20], p. 174). Regular *-algebras have many
special properties, some of which are considered in the next lemma. Our
intcrest here in regular algebras is due to the fact that if G € [PG] and
f =f*e LN(@)nL*(G) has compact support, then {f) is regular. This
fact is established by an argument due to J. Dixmier which we paraphrase
in the proof of (4.1). This local regularity property of L'(@) has far reach-
ing consequences which we explore in this section. We study a Banach
*-algebra A with the property that {f) is regular for all f in a dense subset
of 4,,. In important ways, this property determines a correspondence
between the ideal theory of A and that of 4 (see Theorem 4.2). Also,
it affects the representation theory of the algebra A (see Theorem 5.1).

First we prove a useful lemma concerning properties of commutative
regular Banach *-algebras.

LEMMA 4.1. Let A be a commutative reqular A*-algebra. Then

(1) y4 s a unique C*-norm on A;

(2) A is symmelric;

(3) amy y-closed ideal of A is a kernel (i.e., an intersection of modular
maximal ideals of A);

(4) if A i3 a dense *-subalgebra of am A*-algebra B, then B is regular.

Proof. Let 4 be a C*-norm on A. By a result of Kaplansky (see [20],
Corollary (3.7.7)), A(f) = o(f) for all f e A. Therefore, 4 is a @-norm on A.
If fe A and f = f*, then A(f) = A(f")* " — o(f) by (2.1). Therefore, A(f)
= o(f). Of course, the same equality holds for the 0*-norm y. Thus, for
any fedA,

y(O =v(F° ) = o(f*f) = X' f) = A(f)".

This proves (1).
(2) follows from [20], Corollary (3.7.7), and (2.2).

Now let I be a y-closed ideal of A. Then I is a closed ideal in A with
I = InA. By [6], Théoréme 2.9.5, I is the intersection of modular maxi-
mal ideals of A. If M is a modular maximal ideal of 4, then since A is
commutative, ANM is a modular maximal ideal of A (ANM is the kernel
of a multiplicative linear functional on A in this case). Thus (3) holds.

Assume that A is a dense subalgebra of a Banach algebra B. Let
&, and D5 denote the carrier spaces of A and B, respectively. For ¢ € @,
let ¢, denote the restriction of ¢ to A. Since A is dense in B, the map
@ —> @, is one-to-one on Pgp. Let pe D,. By (1), y,(f) = y5(f) for all
f e A. Then, for some constant K,

lp(NI <ya(f) =va( < KJfly for all feA.
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Therefore, ¢ extends to a multiplicative linear functional on B. This
proves that ¢ — ¢, maps @, onto D,. It is easy to see that this map is
a homeomorphism. If I'" is a closed subset of @, with v € Pg\TI', then
there exists an fe A such that f(p,) = 0 for all p e I' and f(y,) 5= 0.
This proves that B is regular.

Now we introduce a kind of local regularity property for a Banach
*-algebra 4.

Definition 4.1. Let A be a Banach *-algebra. A is locally regular
if there exists a collection R < A4,, such that R is dense in 4,, and, for
each f € R, the algebra {f) is regular.

Before deriving the special properties of locally regular algebras,
we consider our main example: L'(@), where G € [PG]. The basic argument
we use here is due to Dixmier [4].

For z € C (C is the set of the complex numbers) we put

u(2) = exp(iz) —1.

Then u(z) has a power series expansion converging for all z e C and,
therefore, for any ¢ € L'(@), u(g) € L'(@).

(4.1) Let A be a compact subset of an LC group G for which there exists
a positive tnteger m such that |A™| = O(n™) as » — oo (here |B| i8 the Haar
measure of a given set B). Assume that f = f* e LY(G)NnL*(Q), [Ifl, <1, and
supp(f) < A. Then [u(nf)ll, = O(n™*").

Straightforward modifications of the arguments of Dixmier in [4],
Lemme 6, provide a proof of (4.1).

(4.2) Assume @ e[PQ]. Suppose f =f*e L' ()NL*(Q) and [ has
compact support. Then sp(f; L' (G)) is real and {f) is regular.

Proof. Let A be L'(@) with identity adjoined. We may assuma that
Ifl, = 1. By (4.1) there exist a positive integer m and a constant J > 0
such that |lu(nf)|; < Jn™ for n > 1. Then exp(if) € A and

ll(exp (i))"| < (J +1)n™  for n>1.

Thus, g,(exp(if)) < 1. Suppose a+-ib e sp(f; 4), where a, b are real
with b # 0. We may assume b < 0 (since a —ib e sp(f; 4)). Then

exp(i(a+ b)) = exp(ia)exp( —b) e sp(exp(if); 4)
and
exp(—b) > 1.

This contradiction proves that sp(f; L'(@)) is real.

Now consider {f). The carrier space of {f) is as usual identified with
sp(f; L' (&))\{0} or in (some cases with sp(f; L'(G))). As in [4], Lemme 7,
all functions on R with sufficiently many derivatives operate on f.
Thus from Lemme 7 in [4] it follows that {f) is regular.
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(4.3) Assume G € [PG] and @G i3 compactly generated. Let
Ay = {weL'@): v e L'(Q) such that vxw = w}.

There exists a fized positive integer m such that, for every f = f* in
LY (G)NL*(G) with supp(f) compact, there exists a sequence {w,} = A,N{f)>
such that
lw, —f"ll, >0 a8 n — oo.

The result (4.3) is rather technical, but is necessary at a crucial point
in the proof of Proposition 5.1. A proof bascd on [4], Lemme 8, is contained
in the proof of [10], Theorem 2.1.

Now let & € [PG] and assume that G is compactly generated. Let
w(z) be a polynomial weight on @ as in [19], p. 900. Let L'(@, w) be the
corresponding L'-algebra with respect to the weight o ([19], p. 900).
The same arguments as those given above apply in this case with w(z)dx
in place of Haar measure dz to prove that L'(@, w) is locally regular.
These algebras are also always symmetric as shown in [19], Corollary 7.

To summarize:

THEOREM 4.1. For G e [P@], L'(Q) is locally regular. If @ € [PQ],
G 18 compactly generated, and w i3 a polynomial weight on @, then L'(@, w)
18 locally regular.

At this point we proceed to establish some basic properties of locally
regular A*-algebras.

LEMMA 4.2. Let A be a locally reqular A*-algebra. Then y, i8 a unique
O*-norm on A.

Proof. Let B be as in the definition of a locally regular algebra.
Assume that A is a C*-norm on 4. By Lemma 4.1, y, is a unique ¢*-norm
on {f) for f € R. Therefore y,(f) = A(f) for all f € R. If g € A,,, then choose
{g9.} < R such that |lg,—gll > 0. Then y(g9,—g) -0 and A(g,—g) > 0.
Therefore

v(9) =,1‘im7(9.) = lim4(g,) = A(g).

Finally, for any fe A,
y(H? = 2(f*f) = M) = AP

It is well known that an LC group G is amenable if and only if the
two C*-norms y(f) and

A(f) = sup{llfegl,: g eL’(G), gl = 1}

coincide for all fe L'(@). Thus Theorem 4.1 together with Lemma 4.2
provide a proof of the known fact that if G e [PG], then @G is amenable.
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LEMMA 4.3. Let A be a locally regular‘A*-algebm. Let I be a y-closed
ideal of A. Then A |1 is locally regular and has a unique C*-norm.

Proof. Let R be the set of all f+I € A/I such that fe R and f ¢ I.
Certainly, R is dense in (4 /I),,. Fix f € R such that f ¢ I. By Lemma 4.1,
{fy>nI is a kernel in {f). This means that there is a closed subset I" of the
carrier space of {f) such that

HoI ={gelfH: §(I') = {0}}.

Then by [20], Theorem (3.1.17), the carrier space of {f>/{f>NI is
homeomorphic to I'. From this fact it is straightforward to argue that the
algebra {f)[{f>NI is regular. Let ¢ be the map defined by

e(g+<HNI) =g+I (gelf)).

Then ¢ is a continuous *-embedding of {f)/{f)NI into a dense subal-
gebra of (f+I). By Lemma 4.1 (4), {f+I) is regular. Thus A/I is locally
regular. That A /I has a unique C*-norm follows from Lemma 4.2.

Concerning Lemma 4.3, when 4 = L'(@), @G € [PG], the technical
Banach algebra argument in the proof of this result can be avoided. For
in this case for functions f as in the statement of (4.1) we have |ju(nf)|,
< In™*! (n > 1) for some constant J > 0 and some positive integer m.
The same inequality holds for the quotient norm of w(n(f+1I)) in A/I.
Then the argument in (4.2) shows that {f+ I) is regular.

Now we turn to the main result of this section.

THEOREM 4.2. Assume that A is a locally regular A*-algebra. Let I be
a closed ideal in A. Then ANI = 1.

Proof. Let J = AnI < I. By [6], Proposition 1.8.2, both 4/I and
A |J are C*-algebras. Define maps ¢, and ¢, on 4/ANI into A/I and 4/J,
respectively, by

@1(g+ANnI) =g+I, @(g+ANnI) =g4+J (ged).

Note that both ¢, and ¢, are *-isomorphisms on A /4 NI. Therefore,
the functions

L(g+ANI) = |y, A(g+ANnI) = ezl (g4
are C*-norms on 4 /ANI. By Lemma 4.3,
(+) M(g+ANnI) =2(9+ANI) (ged).

Let ¥ be the norm on A (y(f) = y,(f) for f € A). Assume f € I. Choose
{f.} = A such that y(f,—f) = 0. Since fel,

ll(fn'I'AnI) = "fn'l"I“A_/I = ”(fn_f)"l'I"j./I < 7(fn—f) - 0.
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Therefore, by (*),
Ifa+dll 50 = Aa(fa+ANI) - 0.
Tt follows that there exists {h,} < J such that y(f, —h,) — 0. Therefore

Y(f—hy) < y(f—fa) +y(fa—hy) 0.

Thus f edJ. This proves I =J.

COROLLARY 4.1. Let A be a locally reqular A*-algebra. If P ¢ PRIM*(A),
then P e PRIM (A). If, in addition, A is assumed to be symmetric, then for
any P e PRIM(A) we have P € PRIM (4).

Proof. If P e PRIM*(A), then there exists an irreducible *-represen-
tation (¢, H) of A such that P = ker(¢). Let § be the unique extension
of p to A. Let K = ker(p). Then P = EnA. By Theorem 4.2, K = EnA
= P.

The kernel of a continuous irreducible representation of a Banach
algebra is a closed ideal with no ideal divisors in the algebra. For this rea-
son, information concerning ideals with this property can prove useful
when dealing with the representation theory of the algebra. The next
two results concern ideals with no ideal divisors. These results are essen-
tially corollaries to Theorem 4.2.

LEMMA 4.4. Let A be a locally regular A*-algebra. Let I be a y-closed
ideal of A such that I has no ideal divisors in A. Then I has no ideal divisors
in A.

Proof. Assume that J and K are ideals in A with JK < I. Then
JK < I. Therefore

(JNA)(KnA)<= InAd =1.
By hypothesis we have JNA = I or KnA < I. Then, by Theorem 4.2,
J=(JnA)"<I or K=(KnA)- <.

If A is either GCR or separable, then every closed ideal of A with
no ideal divisors is primitive in A. This follows in the GCR case from [13],
Lemma 7.4, and in the separable case from [5], Corollaire 1.

PROPOSITION 4.1. Let A be a locally regular A*-algebra such that A is
either GOR or separable. Assume that P is a y-closed ideal of A. Then P has
no ideal divisors in A if and only if P e PRIM*(A).

Proof. Assume that P is a y-closed ideal of A with no ideal divisors
in 4. Then, by Lemma 4.4, P has the same property in 4. Consequently,
P ¢ PRIM(A) (see the remarks preceding the proposition). It follows that
P ¢ PRIM*(4).

Let B be a (*-algebra with structure space Q (2 is PRIM(B) with
the hull-kernel topology). In this case B can be represented as an algebra
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of vector-valued functions on 2 (see [13]). For fe B and @ € 2 we use
the notation f (@) = f+@ € B/Q. The norm

Iflle = sup{If (@)Il: @ € 2}

is a C*-norm on B, and therefore ||f|l, = ||fllz for all f € B.
In the next result we use the notation above with A in place of B.

THEOREM 4.3. Assume that A is a locally regular A*-algebra, and let
Q denote the structure space of A.

(1) Let I' be a closed set in 2 and assume P, € Q\I'. Then there exists
an f € A such that f(Q) = 0 for all @ € I" and f (P,) # 0.

(2) Assume that A i8 symmetric and 2 i3 Hausdorff. Let K be a proper
closed ideal of A which has mo ideal divisors in A. Then K 8 contained in
at most one primitive ideal of A.

Proof. Let I" and P, be as in (1). Since I" is hull-kernel closed, there
exists a g € A such that (@) = 0 for all @ € I" and §(P,) % 0. Then g is
contained in the closed ideal I = () {P : P € I'}. By Theorem 4.2, (ANI,)~
= I,. Therefore, there exists an f e ANI, such that f(P,) # 0.

Now assume that K is as in (2). Suppose that K < P,nP,, where
P,, P, e PRIM(A), P, # P,. By Corollary 4.1, P, and P, are in PRIM(J).
Let U, and U, be disjoint open neighborhoods in Q of P, and P,,
respectively. For j = 1,2 let

I, ={fed: f(Q) =0 for Qe Q\U}}.

By part (1), I; ¢ P, j =1, 2. But I,I, = {0} < K, and therefore
either I, or I, is contained in K < P,NP,. This contradiction proves (2).

5. Applications to representation theory. In this section we apply
the results of Section 4 to the representation theory of L'(@), where
G € [PG]. Our main results concern the cases where either @G is GCR or @
is a Moore group (definition: every irreducible *-representation of L' (@)
is finite dimensional). In the latter case we prove that for a Moore group
@ every continuous irreducible representation of L'(@) on a normed linear
space is finite dimensional (Theorem 5.2). When @ is abelian, this is proved
by Godement in [9] with the additional hypothesis that every primary
ideal in L'(@) is maximal. Kaplansky [12] verified this hypothesis for
a general LC abelian group and extended the result to the case where @G
is the direct product of a compact group and an abelian group.

We begin with several results concerning the case where 4 is GCR.
Let X be a Banach space. Denote by K(X) the algebra of all compact
linear operators on X.

LeMmA 5.1. Let (J, |I*]]) be a Banach algebra of linear operators on
X with J < K(X). Denote the usual operator norm by |-|l,. Assume that
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(i) J 18 not a radical algebra,

(i) es(T) < ITllo (T €J).

Then there exists a nonzero idempotent in F(X)NJ.

Proof. By hypothesis (ii) the operator norm |- ||, is a @-norm on J.
Therefore (2.3) applies, so that for all T' € J

bndry(sp(T'; J)) < bndry(sp(.’l’ ; B(X )))

Since J = K(X), this implies sp(T;J) =sp(T; B(X)) (T €J). By
(i) there exists an 8 edJ with sp(8; J) # {0}. Choose 4 # 0, A esp(8;J).
Then A is an isolated point of sp(8; J) and

E = (2ni)~ [(uI —8) " dp

is a projection in J, where I" is some circle which contains in its interior
A, but no other point of sp(8;J). Then E # 0 and F e F(X)NdJ.

Concerning representations of an algebra, we use the notions F.u3
([21], p. 231) and Naimark-related ([21], p. 232) as in Warner’s book.
We note here that an irreducible representation (z, X) is FDS if and only
it =(4)nF(X) # {0}.

THEOREM 5.1. Let A be a symmetric locally regular A*-algebra with
A GCR. Assume that (m, X) i8 a continuous irreducible Bamach represenia-
tion of A with ker(n) y-closed. Then (=, X) is FDS and Natmark-related to
an irreducible *-representation of A.

Proof. To prove the theorem it suffices, by [1], Corollary 11, to show
that =(A) contains a nonzero operator with finite-dimensional range. It
is easy to see that if A contains an element ¢ such that ¢ +ker (%) is a nonzero
idempotent in A /ker (=) and m(eAe) is finite dimensional, then #(¢) € F'(X).

We proceed to use Lemma 5.1 to establish the existence of such an
element e. Let P = ker(xn). By Lemma 4.4 and the remarks immediately
following Lemma 4.4, P e PRIM (A4). Since 4 is GCR, there exists an irre-
ducible *-representation (¢, H) of A with ker(p) = P such that K (H) < ¢(4).
Let I be the closed ideal of 4 defined by I = ¢~*(K(H)). Let J = ¢(INA).

By Theorem 4.2, InA = I, and therefore J is a dense subalgebra of K (H).
Since A is symmetric, 50 is (A4) ~ A [P. Hence the operator norm on ¢(4)
(which by Lemma 4.3 is the unique C*-norm on ¢ (4)) is a @-norm on ¢(4)
by (2.2). Now J is an ideal in ¢(4), and hence the operator norm is a @-norm
on J. Also, since ¢(4) is semisimple by [20], Theorem (4.1.19), so is J.
We have verified that (i) and (ii) of Lemma 5.1 hold for J. Let Z be a non-
zero idempotent in F(H)NJ. Choose ¢ e A such that ¢(6) = E. Then,
as argued previously, m(e) is a nonzero operator with finite-dimensional
range on X. This completes the proof of the theorem.
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COBROLLARY 5.1. Assume that G € [PG]N[GCR], and either G € [HER)]
or G is compactly generated. If (m, X) i8 a continuous irreducible Banach
representation of L' (@) with ker (x) y-closed, then (n, X) is FDS and Naimark-
related to an irreducible *-representation of L'(G).

Proof. In the casc where G e [HER] the corollary follows directly
from the theorem. Assume that G is compactly generated. Then, by [19],
Corollary 7, L'(G) has a dense symmetric *-subalgebra 4 = L'(@, w), where
o is a polynomial weight. Since L'(@, w) is locally regular (Theorem 4.1),
the restriction of the Gelfand-Naimark norm y of L'(G) to A is equal
to y, by Lemma 4.2. Therefore, A and C*(@) can be identified, so that 4 is
GCR. Let (%, X) be as in the statement of the corollary. Let &, be the re-
striction of = to A. By Theorem 5.1, (%9, X) is FDS and is Naimark-related
to an irreducible *-representation (¢,, H) of A. Again, since y(f) = y4(f)
for f € A, g, has a unique extension to a *-representation (¢, H) of L'(G).
Let V be a closed operator, V: X — H with domain D(V) =,-invariant
and such that

Vagg)e = go(g) Ve (g€ 4, xeD(V)).

Assume that fe LY@ and z e D(V). Choose {f,} < A such that
[fa—fl = 0. Then

Vas(fa)e = @o(fp) Ve —o(f) Ve and  m(f,)z — n(f)z.

Therefore =(f)x € D(V) and Vz(f)z = ¢(f) V&. Thus, (7, X) is FDS
and Naimark-related to the irreducible *-representation (¢, H).

COROLLARY 5.2. Assume that G € [PG]IN[GCR] and G is compactly
generated. Then the following are equivalent:

(1) LY(@) is symmetric;

(2) PRIM(L'(@)) = PRIM*(L'(@));

(3) if P e PRIM (L'(@)), then P is y-closed.

Proof. We verify that (3) = (1). Let (#, X) be an algebraically irre-
ducible Banach representation of L'(G). Then P = ker(n) e PRIM(L' (&)
and is, by hypothesis, y-closed. By Corollary 5.1, (=, X) is Naimark-related
to a *-representation of L' (@). Then the result follows from [1], Theorem 1.

For a closed ideal J in a Banach algebra A, let

h(J) = {@ ePRIM(4):J = Q} and Fkh(J)=\{Q: @ eh(J)}.

The next result deals with a certain very special case in which a closed
ideal J in L'(@) has the property that J = kh(J).

PROPOSITION b5.1. Assume that G € [PG] and G is compactly generated.
Let J be a closed ideal of L' (G) such that

(i) ¢f Q € h(J), then L'(G)/Q has finite dimension;

(i) A(J) s finite.

Then J = kh(J).
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Proof. Let P = kh(J) and assume that J # P. Let Cg be the sub-
space of L!'(@) consisting of continuous functions with compact support..
There is a finite-dimensional subspace D of Cr such that L'(G) = DPP.
Let E be the continuous projection of L'(@) onto P determined by this
decomposition. Note that since D < Cg, we have E(Cg) < Cg. It follows
that PNCx is dense in P. Let

P, = {w e P: 3v e P such that vxw = w}.

We make the following
CrLA™M. There exists a w € P, such that w ¢ J.

We establish the Claim by contradiction. Suppose that P, < J.
Let m be the fixed positive integer as in (4.3). Then by (4.3) for every
f = f* e PNOg there exists {w,} < P, such that |w, —f™|; -0 as n — oo.
Therefore, for every such f, we have f™ e J. But since OxzNP is dense in
P, it follows that if ¢ = g* € P, then g™ e J. Now, by [15], Theorem 2,
P has a bounded approximate identity {u,: 1 € A}, where A is a directed
set. Then

wy = (Hua+u)))™ (e d)

is a bounded approximate identity for P, and w, e J for all 1 € A. Thus
P = J, contradicting our standing assumption. This proves the Claim.

By the Claim there exists a w,eP,, w, ¢J. Assume that voe P
and vo*xw, = wy. Let Ly = {f e P: fxw, € J}. Note that P»(1—v,) < L,
and J < L, Also, since vy*w, = w, ¢ J, L, is proper. Thus there exists
a modular maximal left ideal of P that contains L,, and hence J. Therefore,
there exists a primitive ideal @, of P with J < @,. It follows from [7],
Proposition 3, that there exists a primitive ideal @ of L' (@) such that

J <@y =PnQ<Q.

This is a contradiction.

Assume that G is a compactly generated Moore group and PRIM (@)
is Hausdorff. Let (#, X) be a continuous irreducible representation of L (G)
on a normed linear space X. Let J = ker(x). The closed ideal J has no
ideal divisors in L'(@). By Theorem 4.3 (2) and [10], p. 295, J is contained
in one and only onc ideal P e PRIM(L'(@)). Therefore, by Proposition 5.1,
we have J = P. Then, since L'(@)/J is finite dimensional, so is X.
In the original version of this paper we used the remark above as a basis
for proving the general result: if G is a (discrete or compactly generated)
Moore group, then every continuous irreducible representation of L'(Q@) on
a normed linear space is finite dimensional. While revising this paper we
received a preprint A note on Banach space representations of Moore-groups
by Richard D. Mosak, that essentially contains the same result. Since
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Mosak’s arguments are shorter, we will simply indicate here how the
general result follows by using his ideas.

Let G be a Moore group and assume that (#, X) is a continuous ir-
reducible representation of L!(G) on the normed linear space X. Set
K = ker(n) and let A denote the center of L'(@). As noted by Mosak,
A is a nonzero semisimple regular Tauberian commutative Banach algebra.
Assume that KXNA is contained in two distinet maximal ideals M, and
M, of A. Since A is regular and semisimple, we can choose g,, g, € A such
that g,9, = 0 and ¢,(M,) #0, g,(M,;) #0. For k =1, 2, let J, be the
closure in L'(G) of L'(@)*g;. Then J,NJ, < J,J, = {0} = K. Now K has
no ideal divisors of zero in L'(@), and thus J, < K or J, < K. Then
g1€J,NA or g,edJ,NA is in KNnA <« M,NnM,. But this contradicts the
choice of g, and g,. Thus KNA is contained in at most one maximal ideal
of A. From this point the argument proceeds as in the proof of Theo-
rem 1 in Mosak’s preprint. This proves the following

THEOREM 5.2. Assume that G is a Moore group. Then every continuous
irreducible representation of L' (@) on a normed linear space 18 finite dimen-
stonal.
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