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Consider a locally compact topological group with some Haar measure
and two subsets A and B of finite positive measure. Then, according to
a theorem of Weil ([10], p. 50), the set A-B = f (A x B) has non-empty interior,
where f is the group operation. The special case of the additive group of real
numbers is due to Steinhaus [9].

It seems natural to seek corresponding results for general binary mappings
S on topological measure spaces. A first such result was obtained by Erdos and
Oxtoby [2] who considered continuously differentiable functions on open
subsets of Rx R with non-vanishing partial derivatives, thus generalizing
Steinhaus’ theorem. This inspired Kuczma [5] to impose, in the case of
abstract binary mappings f on topological measure spaces, some Ra-
don-Nikodym type differentiability with respect to both variables together
with global solvability of the equation z = f(x, y). (Further Steinhaus type
theorems can be found in [6], [4] and [7].)

Kuczma’s theorem, however, does not contain Weil’s theorem in full
generality. Moreover, his assumiption of global solvability appears rather
strong; he asks ([5], p. 106) whether it can be weakened to local solvability. The
aim of this paper is to answer this question in the affirmative, providing
a Steinhaus type theorem that is strong enough to comprise Weil’s theorem.
Our main tool is, as in [5], an abstract rule of differentiation of implicit
functions: we prove a local version of Kuczma’s Proposition 2. A Fubini
theorem for Radon measures on arbitrary Hausdorff topological spaces, due to
Schwartz [8], allows us to drop several measurability assumptions that were
made by Kuczma.

1. Notation and definitions. A triple (X, X, A) consisting of a Hausdorff
topological space X, a g-algebra X of subsets of X and a measure A defined on
2 is called a topological measure space if X contains every open set, ie., if
Z contains #(X), the g-algebra of Borel sets generated by the open sets in X.
The measure 4 is then called a topological measure. A topological measure A is
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regular if
A(E) = inf{A(0):0 > E open} for all E€X

and
' A(E) = sup{A(K): K < E compact} for all open sets E
(and hence for all Ee 2 with A(E) < oo; cf. [3], (11.32)). A regular topological
measure A with A(K) < oo for all compact sets K is called a Radon measure, and
the corresponding triple (X, Z, A) (or (X, A) for short) a Radon measure space.
A Haar measure is a left or right invariant Radon measure on a (necessarily
locally compact) topological group. For the theory of Radon measures see [8],
and for Haar measures see [3].

For a topological measure space (X, X, 1) and a topological space Y,
a mapping g: X — Y is called measurable if g~'(0)e X for all open sets O in Y,
in particular Borel measurable if Z = %(X). In the case of Y = R we understand
(A-) integrability in the sense of abstract measure theory. (Schwartz’ “A-strict
integrability” in [8] is integrability with respect to the completion of 1.)

For topological measure spaces (X, 2, A) and (Y, T, u), a measurable
mapping ¢: X — Ry is called the Radon—Nikodym derivative (RN-derivative) of
a mapping g: XY if

g(A)eT and p(g(A4) = £ edA

for all Borel sets A in X (but not necessarily for all AeZX).

Consider now topological spaces X, Y and Z and a mapping f: D> Z,
where D is an open subset of X x Y. We say that f is continuously solvable at
a point (x,, yo)€D if there are neighbourhoods U of x,, V of y, and W of
2o = f(xg, yo) With UxV < D and continuous mappings

: UxW->Y and y: VxW-oX
such that for all (x, y, 2)eU x V' x W we have
f(x,y)=z0(x, 2) = y=y(y, 2) = x.
If A, p and v are topological measures on X, Y and Z, respectively, then we call

f RN-differentiable at (x,, y,)€ D if there are open neighbourhoods U of x, and
V of y, with Ux ¥V < D and mappings

o, B: UxV->R§
such that for each xeU and yeV the mappings f|, and f’|, have
RN-derivatives B, and o’, respectively. We call a and B the partial
RN-derivatives of f.

Above, R; denotes the set of non-negative real numbers. For a mapping
f: XxY—>Z the mappings f,.: Y- Z and f’: X > Z are defined by

f.0)=fx)=f(x,y) for xeX and yeY.
id always denotes the identity mapping.
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We adopt D. H. Fremlin’s P...Q notation to mark off the proof of the
statement immediately preceding P.

2. A rule of differentiation of implicit functions for RN-differentiable
mappings. In this section we prove a local version of Kuczma’s Proposition 2.
Apart from arguments similar to Kuczma’s we need two auxiliary results.

In abstract measure theory, the product of two measure spaces is endowed
with a measure defined on the smallest g-algebra containing all measurable
rectangles; the Fubini theorem holds for this measure. Now, in the product of
two topological measure spaces the Borel sets constitute a more natural
c-algebra that is in general larger than the product s-algebra. So, the classical
Fubini theorem is not good enough to deal with this situation. Instead, we need:

THEOREM A (Schwartz [8], pp. 63-70). Let (X, A) and (Y, p) be finite and
complete Radon measure spaces. Then there is a Radon measure A xpon X xY
such that

(A x p)(A x B) = A(A)-n(B)

for all Borel subsets A of X and B of Y. For any (A x p)-integrable function
y: X X Y >R the function y” is A-integrable for u-almost all ye 'Y, the mapping

y=§y(x, y)di(x)
is p-integrable and

§rd(A x p) = §(§y(x, y)dA(x))du(y).

The following simple result allows us to avoid talking about inverse
mappings. '

LEMMA B. Let X, Y and Z be topological spaces and f: X -Y, g: YoZ
and h: X - Z mappings with h = gof. If h is an open mapping, then

(@) f is open if g is continuous and injective;

(b) g is open if f is continuous and surjective.

Proof. If g is injective, then

f(E)y=g ' (h(E) for Ec X,
and if f is surjective, then

g(E)=h(f"'(E)) for EcY.
We can now prove

THEOREM 1. Let (X, A), (Y, p) and (Z, v) be Radon measure spaces, D an open
subset of XxY, (xq, yo)€D, and f: D—Z a continuous mapping. Put

= f(xq, Yo)- Suppose that

@ f is contmuously solvable at (x,, y,) with solutions ¢ and {;

(i) f is continuously RN-differentiable at (x> Yo) With non-vanishing
partial RN-derivatives a and P,

(iii) there is a neighbourhood W of z, such that v(W')> 0 for all open
non-empty subsets W' of W.
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Then there are open neighbourhoods U of x,, V of y,, and W of z, with
UxV < D such that for all ze W the mappings

a(x, @(x, 2)) B (s 2), )
"B o) M Y aw0,2,9)
(xeU, yeV) are the RN-derivatives of ¢, and W, respectively.

Proof. By symmetry it suffices to prove the assertion for ¢. We divide the
proof into several steps.

(1) Since A, u and v are Radon measures and « and B are continuous, we
can find neighbourhoods U, of x,, V, of y,, and W, of z, of finite measure with
Uy, x V¥, = D in which the conditions of (i}iii) hold and such that there are
constants 6, M > 0 with.

o<u(x,y) <M and JI<P(x,y)<M for xeU, and yeV,.
In this first step we investigate the properties of the mappings
F: UyxV,=»UyxZ, F(x,y)=(x,f(x,y);
G: Ugx Vo= Z xV,, G(x, 3 =(f(x, y)¥);
D: Uy x Wy WoxY, &(x,2) =z, o(x, 2));
as well as f,, f” and ¢°.
As auxiliary mappings we consider
H: UyxWy>UyxY, H(x,z)=(x, ¢(x, 2))
and ’
J: pV()XVO_’XX'VO, J(Z, y) ('l’(y, Z), y)
(1a) Since f, ¢ and yr.are continuous mappings on U, x V,, U, x W; and
Vo X W,, respectively, any of the mappings above is continuous, and there

are open neighbourhoods U, c U, c U, of x4, V, <V, ¥, of y,, and
W, c W, c W, of z, such that

oUxW)<Vy, YV, xW) < Uy,
SU;xV)cW, and oU,xW,)cV,.

(lb) It is now easy to deduce from (i) that the following are injective:
Fand Gon U, xV,,®and Hon U, xW,,Jon W, xV,, f”and ¢*on U,, f,
and y* on V;, and ¢, and y, on W, for xe U,, ye V¥, and ze W,. Moreover, we
have

U,xW, c F(U,xVW).
(1c) Similarly, it follows from (i) that .
HoF =JoG=id and ®oF=G on U xV,,
¢oof,=id on V¥, for xeU,,
y,of’=id on U, for yeV,
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and
Yy*op*=id on U, for ze W,,
where all the composite mappings are well defined.

(1d) Applying Lemma B we infer from (la){(1c) that F, G, &, f . (xeU,),
f’(yeV,) and ¢*(ze W,) are homeomorphisms on U, x V;, U, xV;, U, xW,,
Vi, U, and U,, respectively.

The properties of (1d) ensure, in particular, that the expressions considered
in the remainder of the proof are well defined. Let in the following /, i and
v denote the completions of the measures 4, 4 and v|gz, the restriction of v to

B(2).
(2) In this step we prove that for all Borel subsets A of U, we have

ulora) = 20209 gy

Aﬁ(x$ (P(x, Z))

for v-almost all ze W,.
(2a) For all Borel subsets Q of U, x ¥, we have

AxD(F(Q) = [paix ) and  (7xAGE@) = [ad(dx

P Since
FU, xV)cUyxW,
with
ExDUox W) <0,  (Ax @)U, x Vo) <
and -
Bx, ) <M for (x, y)eUyx V,,

we can apply Theorem A twice to derive for any Borel subsets A of U, and
B of V;:
(AxN(F(Ax B) = (Ax"({(x, 2): xe A and ze f,(B)})

= [W(LB)aE = [ ([ Bdwdte = | paixp.

AXB
Note here that f,(B) is a Borel set in Z for all xe U, by (1d).-Hence the claim
holds for all finite unions of open rectangles. Now let O be any open subset of
U,xV,. Let £>0 and let K be a compact subset of O with

(AxD(FONF(K)<e and (Ax@O\K)<e.
Then there is a finite union O of open rectangles with K = O < 0. Hence

f (A x f)—M-e < ‘j;ﬂd(,fx ) < (Ax 9)(F(0))
o
< AxN(FO)+e< [pdAx p)+e.
[/
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As ¢ > 0 is arbitrary, the claim now holds for all open subsets of U, x V,, and
hence, by a standard argument, for all Borel subsets. The claim for G follows
similarly. Q
(2b) For all Borel subsets Q@ of U, x ¥, and all Borel measurable functions
y: U; x W, - Rg we have (in [0, o0])
§ yd(x %) = [ (yoF)-d(x ).
00) Q
P If R is a Borel subset of U, x W, and y; its characteristic function, then
by (2a) we have
[aroF)BdAx @)= | pdAxf)=(AxF(F '(R)nQ))
Q F~1(R)NQ
= (AxNFQnR) = | xad(Ax 7).
F(Q)
Hence the assertion holds for all simple Borel measurable functions, and
therefore for all y. Q

(2c) For all Borel subsets R of U, x W, we have

(7 x A)(P(R)) = ji‘fc—’l—{d(,f x 7).

P Applying (2b) to the positive continuous function

_ %oH
y - ﬂOHQ
we obtain for all Borel subsets Q of U, x ¥}, using (Ic) and (2a),
aoH aoHoF
| Gomdx9 = | gop g paxi = [ % Bd(2x )
rig BoH oB

= (v X M)(G(Q)) = (Vx A)(P(F(Q))-
Now, since F is a homeomorphism on U, x ¥, and
U, xW, c F(U,x V),
the assertion follows. Q
(2d) We can now prove (2): Consider Borel subsets 4 of U, and C of W,.
Theorem A implies
@ x B(S(4 % C) = (5x B)({(z, ¥ zeC and yep*(4)})
= [ u(9*(4)di(2).
C

Note here that ¢*(A4) is a Borel set in Y for all ze W, by (1d). On the other
hand, by (2c) we have

(¥ x f)(P(Ax C)) = g(;%u)r
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Hence the two right-hana sides coincide for all Borel subsets C of W,, thus also
for all v-measurable subsets. This implies that the two integrands agree
v-almost everywhere in W,, whence (2) holds.

(3) In this final step we use the continuity assumptions on a, f, ¢ and ¥ to
show that in (2) equality holds everywhere in W,, which is the assertion of the
theorem. For convenience, we put

aoH
= e W,.
BoH on U, xW,

(3a) For all compact subsets K of U,, all ze W, and ¢ > 0 there is
a neighbourhood W' < W, of z with

u(@*(K)) = u(e*(K))—e  for [e W'
P By regularity of u, there is an open subset V' of V, with
¢*(K)c V' and pu(V'\@*(K)) <e.

Since ¢ is continuous and K is compact, there is a neighbourhood W’ < W, of
z with

oK) V' for LeW,
whence
#(P*(K)) < u(V') < p(@*(K))+e  for {eW'. Q

(3b) For all open subsets O of U,, all zeW, and &> 0 there is
a neighbourhood W' < W, of z with

1(@*(0)) < p(e*(0) +¢  for LeWw .

P Since ¢*(0) c V; for ze W,, we have p(¢*(0)) < . Hence there is
a compact subset C of ¢*(0) with

u(9*(0) < u(C) +e.

From y*0¢* = id on U, for ze W, we deduce that }*(C) = O, and hence there
is, by the continuity of y, a neighbourhood W’ = W, of z with

Y (C)c=0cU, forleW.
This implies C < ¢*(y*(C)) = ¢*(0), whence

1(@*(0)) = u(C) > u(e*(0))—¢  for (eW'. Q
(3c) For all compact subsets K of U, and all ze W, we have

Ko (K) > [y dA
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P Let ¢ > 0 and ze W,. By the continuity of y and the compactness of
K there is a neighbourhood W' <= W, of z with

ly(x, 2)—y(x, )l <& for {eW’ and xeK.

Hence
[¥dA = [y"di—eA(K) for (eW'.
K K

Now, by (3a) there is an opén neighbourhood W” < W’ of z with
wo*(K)) = u(¢*(K))—e for LeW”
and, since v(W") > 0 by (iii), there is by (2) a point {e W” with
u(o*(K) = ‘I[ YdA.

Altogether, using this {, we now have
u(@*(K)) > [y*dA—e-(1+A(K)). for any &> 0. Q
K

(3d) For all open subsets O of U, and all ze W, we have
u(@*(0)) < [ yda.
o
P Let ¢ > 0, K be a compact subset of O with A(O\K) < ¢and ze W,. As in
(3c) there is a neighbourhood W’'< W, of z with
[y*dA< [y*dA+e-A(0) for LeW,
K K

and by (3b) there is an open neighbourhood W” — W’ of z with
u(9*(0) < p(¢%(0)+¢ for (eW".
Since v(W”) > 0, there is by (2) a point (€ W" with

1(e*(0) = !; Yda.

From y(x, z) < M/é for xeU, and ze W, we obtain

ol -

fy*di < Iy‘dﬂ.+—b1's.
o K 0
Altogether, we now have

1(@*(0)) < [ y*dA+e(1+M/5+ A(0))
o

for any ¢ >0. Q
(3e) We can now prove (3), and thus the theorem: Consider a Borel subset
A of U,. Then, for compact sets K and open sets O with K c 4 < 0 = U,, by
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(3c) and (3d) we have
{ v dA < p(e*(K)) < p(e*(4) < u(@*(0)) < (I) ydi _ for ze W,.

The regularity of A now implies

u(@*(4)) = [y*dA  for all ze W,.
4
Remarks. (a) Theorem 1 generalizes and sharpens Kuczma’s Proposition
2: all measurability assumptions on f, ¢, ¥, « and f and the o-finiteness of
m can be dropped.

(b) The arguments (35) and (3d) are an alternative to Kuczma’s argument
in [5], pp. 101. and 102.

3. An extension of the Steinhaus—Weil theorem. Using a method due to
Weil [10], we can now derive a Steinhaus type theorem that contains Weil’s
and Kuczma’s theorem.

THEOREM 2. Let (X, A), (Y, u) and (Z, v) be Radon measure spaces, D an
open subset of X x Y, and f: D — Z a continuous mapping. Let Ac X and Bc Y
be sets of finite positive measure with A x B < D. Iff is continuously solvable and
continuously RN-differentiable with non-vanishing partial RN-derivatives at
every (x, y)€ Ax B, then f(Ax B) has non-empty interior.

Proof. By regularity we can assume A and B to be compact sets. A simple
compactness argument shows that there are points x,€ 4 and y,eB with

MANU)>0Q0 and uBnV)>0

for all open neighbourhoods U of x, and V of y,. Put z, = f(x,, y,) and let U,
V and W be open neighbourhoods of x,, y, and z,, respectively, such that

f(xgs @(xg,2) =2z for zeW, ¢,o(m cV

and the partial RN-derivative a of f is defined on U x V.-Let W’ = W be open
and ze W’'. Then there is, by the continuity of f, an open neighbourhood
U c U of x, with f?(U’') =« W’, where y = ¢(x,, z)e V. Hence
VW) 2 (P (AnU) = | o?di>0.
AnU’

Thus all three conditions of Theorem 1 are satisfied at (x,, yo, zo), whence
there are open neighbourhoods U, of x,, V; of y, and W, of z, such that y*(E)
is measurable and '

LNy

for all Borél subsets E of V, and all ze W,. Moreover, we may assume
(W) < o0, f(Uyx V) = W, and

f(x,y) =zey*(y) = x for all (x, y, 2)e Uy x V, x W,.

du(y) -
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Let A’ and B’ be compact subsets of A N U, and Bn V,, respectively, of
positive measure, and define the function w: W,— Rg by

w(z) = (A’ " Y*(B)).

We show that w is continuous. Let ¢ > 0 and ze W,,. Choose an open subset
O of X with

Y*(B)c 0 and A(0\Y*(B)) <e.

By the continuity of y there is a neighbourhood W’ = W, of z with y*(B) = O
for {e W’'. Hence

lo(z)— o(Q)] < A(O\Y*(B))+A(0O\Y*(B)) (draw a diagram!)
< 2e+(A(Y*(B) - A(¥*(BY))

for (e W'. Since a, B and ¥ are continuous and B’ is compact the integral
representation of A(y*(B')) for { e W, now shows that w is continuous in W,.

Let £ and ¥ be the complctlons of A and v. Since x e Y*(B’) is equivalent to
ze f(B'), we obtain, using Theorem A,

Jodv=(f Xs o (2)dA()dv(z) = i(f 1s.(@)d9(2))dA(x)
= [ WaBNdA(x) = [ ([ pidwdi = | pddxp)>0.

A'xB’
Thus, w(z) > 0 in some non-empty open subset W of W,. But if w(z) # 0, then
there are points xe A’ A and ye B’ < B with x = y?*(y), ie, f(x,y) =z
Hence W c f(A x B), which proves the theorem.

Remarks. (a) Theorem 2 generalizes and sharpens Kuczma'’s theorem: all
measurability assumptions on f, ¢, ¥, « and f can be dropped. Moreover, the
o-finiteness of m is only needed to ensure that sets A and B of positive but
possibly infinite measure, as considered by Kuczma, contain sets of finite
positive measure.

(b) Theorem 2 comprises the Steinhaus—Weil theorem: If X =Y =2 is
a locally compact topological group and A = u = v a Haar measure, then the
mapping f (x, y) = x-y for x, ye X is continuously solvable and continuously
RN-differentiable at every (x, y)e X x X. The RN-derivatives are a(x, y) = 4(y)
and B(x, y) = 1 for x, ye X in the case of a left Haar measure, and a(x, y) = 1
and f(x, y) = 1/4(x) for x, ye X in the case of a right Haar measure. Here, 4 is
the positive and continuous modular function of X (cf. [3], pp. 195 and 196).

(c) Of course, Kuczma’s Corollary, the n-dimensional version of the
theorem of Erdos and Oxtoby [2], is now a direct consequence of Theorem 2.

(d) Combining the arguments used here with those of Beck et al. [1] one
can show that Theorem 2 also holds for every subset B of Y that has finite
positive outer measure, i.e., if

0 < inf{u(E): E o B, E = Y measurable} < 0.

Finally, we want to draw attention to the various interesting problems
posed by Kuczma in [5], pp. 105 and 106.
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