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1. Imtroduction. Stochastic integral equations play a significant role in
the characterizing of many social, physical, biological and engineering
problems. Presentation of the basic theoretical developments and an
illustration of the usefulness of stochastic integral equations can be found in
the monographs [3-7], [9] and [10]. This paper deals with the problem of
determination of sufficient conditions which assure the existence of random
solutions of a class of stochastic functional - integral equations. Moreover, we
are interested in asymptotic behavior of those solutions. This problem was
considered for instance in [3], [6] and [8]. The proofs of the existence
theorems contained in [3] and [8] are based on the fixed point theorems of
Schauder and Tychonoff.

We present here new existence theorems for a class of stochastic
functional -integral equations treated in [8]. Our method is based on the
notion of a measure of noncompactness in Banach spaces and the fixed point
theorem of Darbo type. More precisely, we construct a real Banach space of
tempered functions and next define measures of noncompactness on that
space where we are seeking solutions of the considered equations. The given
approach allows us also to investigate the behavior of solutions at infinity.

We shall deal with stochastic functional - integral equations of the form

(1.1) x(t;w)=h(t;w)+'jk(t,t;w)f(t, x, (w))dt,
0

(1.2) x(t; w) = h(t; w)+?k(t—r;w)f(t, X (w))dr,
0

where

(1)) teR* and we Q, the supporting set of a complete probability space
(Q, A, ),
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(ii) x(¢; w) denotes an unknown random function defined for te R* and
we,

(iii) h(t; w) is the stochastic free term defined for te R* and weQ,

(iv) k(t, 7; w) is the stochastic kernel defined for 0 <7 <t < o and
wef,

(v) x,(w) denotes the restriction of the function x(t; w) to the interval
[0, t], t > 0, with x4(w) = x(0; w)e (2, A, P).

2. Definitions and notations.

Definition 1. We shall call x(t; w) a random solution to equation (1.1)
if, for every fixed teR*, x(t, w)e >(2, A, #) and satisfies equation (1.1)
P-as.

4 will denote an infinite dimensional real Banach space with norm || ||
and the zero element @. In the sequel we will denote by K (x, r) the closed
ball centered at x and with radius r. Denote by IR, the family of all
nonempty bounded subsets of Z. Analogously, we denote by I, the family
of all relatively compact and nonempty subsets of Z.

The system of axioms defining a measure of noncompactness is taken
from [2].

Definition 2. A nonempty family ® = N, is said to be the kernel (of
a measure of noncompactness) provided it satisfies the following conditions:

1°UeP = UeP,

2 UeP, VU V# O=VeP,

U, VeP = AU+(1-A)VeP for A€[0, 1],

4° UeP = ConvUeP,

5° 9P° (the subfamily of B consisting of all closed sets) is closed in D
with respect to Hausdorff topology.

Definition 3. The function u: M, — [0, + o0) is said to be a measure
of noncompactness with the kernel P (keru = B) if it is subject to the
following conditions:

1°u(U)=0 = Ue P,

2 u(U) = u(V),

3° u(ConvU) = u(U),

4 UcV= ul)<u®),

5 p(AU+A =) V)< Au(U)+(1 =) u(V) for Ae[0, 1],

6 ifU,eMy, U,=U,and U,,, cU,forn=1,2,...and if lim u(U,)

=0, then U, = (\ U, # O.
n=1

If a measure of noncompactness u satisfies in addition the following two
conditions:

7 w(U+V) < u(U)+pu(V),

8° u(AU) = |4 u(U), AeR,
it will be called sublinear.
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Let M c & be a nonempty set and 4 a measure of noncompactness
on %.

Definition 4. We say that a mapping T M— & is a contraction with
respect to u (u-contraction) if TU € My for any set U e M, and there exists a
constant ke [0, 1) such that ‘

u(TU) < ku(U).
We shall use the following modified version of the fixed point theorem

of Darbo type.

THEOREM 2.1 [2]. Let C be a nonempty, closed, convex and bounded set
of & and let T C — C be an arbitrary u-contraction. Then T has at least one
fixed point and the set Fix T = {xe C: Tx = x} of fixed points of T belongs to
ker pu.

Further, let I2(R, A, #) denote the space of random functions x(t; -)
such that |x(t; )|? is integrable, with

lIx @)l 2 = E2|x(0)] = (f1x(t; 0))*dP(w))"/>.
Q

Let p(’) be a positive continuous function defined on [0, + ) such that
lim supp(t) = 0.
T—wot2T .

By C,(R*, }(2, U, ), p) (or shortly C,) we denote a space of all
continuous maps x(t¢; -) from R* into I?(2, A, &), with the topology defined

by the norm
lIxll, = sup [p () lIx ()l 2 ¢ = 0] < o0,

The space C, with norm || ||, is a real Banach space (cf. [1], [11]).
Now for fixed xeC,, Ue?ﬁcp, T >0 and ¢ > 0 we put

B" (x, &) = sup[llp(t) x () — p(s) x O)ll ;21 ¢, se[0, T, |t—s| <],
B"(U, &) = sup[B" (x, &): xe U],
B3 (U) = limB"(U, ¢),

e—0

Po(U) = lim BE(U),

a(U) = lim sup[supp(1)llx ()l 2]
T—wo xelU 2T

b(U) = Lim sup[sup |[p(¢) x(t)—p(s) X ()l 2],

T—w xeU t,s2T
0],

Ho(U) = Bo(U)+a(U)+sup[p()m(U (1)): t >
#1(U) = Bo(U)+b(U)+sup [p()m(U (): t > 0],

where m is a sublinear measure of noncompactness defined on I?(Q, N, &),
such that one-point sets belong to kerm, and U(t) = [x(t): xeU]. The
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functions u, and y, define sublinear measures of noncompactness defined on
C, ([1], [2]. It is also known ([1], [2]) that keru, is the set of all sets
Ue ‘.Uicp such that functions belonging to U are equicontinuous on any compact

of R* and lim p@lix®ll, =0 uniformly with respect to xeU. Further

t—x

properties of u, and u, can be found in [1], [2].

3. Main results. Let teR* be fixed. We assume that the stochastic
kernel k(t, t; w) is measurable for each t, 0 < v < t, #-essentially bounded
and continuous as a map from the set A={(,1); 0<T<t <o}
into L (2, A, P).

Define for 0 <t <t < o0,

lllk (¢, DIl = P-ess suplk(t, 7; w)|.

meN
The above assumption implies that if xeC, then for each re R*
(3.1) k(1. ©) x|l 2 < Ik (e, DMl 2-

THEOREM 3.1. Let the stochastic functional -integral equation (1.1) satisfy
the following conditions:

(i) |f (t, x ()] < u(@®)|x,(@)+v(t) P-as.,

where nonnegative functions u and v are continuous and defined for te R™,
(ii) the mapping x(t; w) - f(t, x,(w)) from C,(R*, }(2, N, #), p) into
C,(R*, I2(Q. . ). p) is continuous in the topology generated by the norm

lIxIl, = sup [p(0) llx ()Il 2 ¢ = O],

@iii)  sup {p(0) [llk(r, DIl (u(z)/p(v))dr: teR*} =4, 0<A<I,
0

(iv) sup {p(1) [lIlk(t, Dlllv(r)dr: teR*} = B < oo,
0
(v)  limp@)|h@®ll,2=0, limp(r) flilk(, Dl v(z)dz =0,
— a0 t—ac 0
(v1) li_.m pOISt, x)—f(, yll 2 =0

uniformly with respect to x, and v, belonging to the ball K (O, r),

(vii) m(}k(t, ;) f(r, U(t))dr) =0 for any t >0 and Ue!ﬂcp.
0
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Then there exists at least one solution xe C, of (1.1) such that
lim p(0)|Ix (@)l 2 = 0.

t—*aw
Proof. Define the map H on C, by
t
(3.2 (Hx)(t; w) = h(t; )+ [k(t, 7; 0) f(r; x(w))dz.
0

Using the assumptions of Theorem 3.1 and (3.1) we have for xeC,

63 POWEION,: < pOIONz+p O] [kt )£, x)de]
< POIAON 3+ PO Jilk(e, NS (5, %)
< PO IO, +p(r)§mk (¢, DMl u (@) Il de
+90 [l Dl oo)ds
<l + s, () e, M (0)/p ()

+p(0) [lilk (e, Dlllv(x)dr.

Hence, we get

(34) |H x|, < |Ikl,+ Allx]|, + B.

Thus we have proved that H maps C, into C,, and moreover, we see that H
maps the ball K (@, r) into itself with r = (||hll,+ B)/(1 — A). We now prove

that the map H is continuous in the ball K (6, r). Let x, ye K(O, r). For any
given ¢, > 0 choose T > 0 such that

(3.5) P@IS (&, x)—f (5, yll,2 <22, Whenever > T.

Moreover, we can assume without loss of generality that there exists T > 0
such that u(f)>1 whenever t > T and min{u(r): 0<t< T} =u; > 0.
Hence, putting max {p(1): 0<t< T!=py, we have for t > T

PO IHx) (1) —(Hy) DIl 2 < p@) [k @, DSz, x)=f (x, yl 2 de
0

23 — Colloquivm Mathematicum $1
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T .
< p(0) (pr/ug) [Nk (¢, Dllu@)/p @) p@If (2, x)—f (z, yll 2 de
0

+p(®) [k, Dlllu@)/p(@) p@ILSf (x, x)—f (z, yll 2 d7,
T

which by (ii), (iii), (vi), and (3.5) implies

(3.6)
Sugp(t) I(Hx) (&)= (Hy)(0)ll 2 < (pr/ur) Ae, + Ae;,  provided ||x—yl|, <.
>

It can be seen that for any given ¢; >0 one has

(3.7 sup p()I(Hx)()—(Hy)(1)ll 2 <&, whenever |Ix—y|, <9.

O0<t<T
Thus, by (3.6) and (3.7), for any given ¢ >0
IHx—Hy||, <e, whenever |[x—y|l, <é, x, ye K (O, r).

Let now be given ¢ >0, T >0 and ¢, se[0, T), |t—s| <e&. By (3.2, for
0<s<t and xeU <« K(©, r) we have

(3.8)  lI(Hx)(®) p(®)—(Hx)(s) p(3)ll 2 < Ip () —p ) A (DI 2

+p@Ih@) =kl 2 +Ip(O)—pO) || [k, ) f (z, x)d]| 2
0

+p(s)”6"(k(t’ T)—k(sa t))f(t9 xr)dt||L2+p(s)“£k(t’ T)f(‘l', xt)dt”LZ'

But using (3.1) with x, replaced by f(z, x,), we get

(39) lp(M—p(s) Ing (t, 1) f (z, x)d1||

<lp(®)—p() glllk (€ Dl lu @) |xd + vl 2 d2

< Tlp@® —p ()l (Ixll, max {lik ¢, Il (u(z)/p(@)): O << T}
+max {|llk(¢, Dlilv(x): 0< T < T}).

Now we havé the following estimates:

(3.10) P(S)Iltj)'(k(t, 0)—k(s, ) f(z, x)d1|

<20 [lke, ) —k(s, Dl llu (@) Ix) + 0 (@l 2 de
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< Th(s)rmax {lllk (¢, 1) —k(s, Dl (u@)/p@): 0 <7 < T}
+ Tp(s) max {|lk(t, ) —k(s, Dl v(x): 0< 7 < T}

and

@11 p@)||fk(, 9 f G, x)dr]|,2

< p(s)rmax {|[lk(t, 7)lll (u()/p(v)): 0 <7< T}it—s|
+p(s)ymax {||[k(z, D[lv(r): 0 <t < T}|t—s.
We now need to recall the definition of the modulus of continuity which
is defined for a real function w:
(3.12) vr(w;e) =sup{{w(t)—w(s): t,se[0, T], [t—s| <&}, &=0.
By (3.8) and the assumptions of Theorem 3.1 we have

limvr(p; &) = lim vy (h; &) = imvr(|llklll, &) = imvz(¢, &) = 0.
=0

e—0 £—0 e—0

Hence, using (3.8)-(3.11), we get

(3.13) Bo((HU)) = 0.
Fix now U < K(©, r). We prove that
(3.149) a((HU)) < Aa(U).

It is clear, by the definition of integral, that for any given ¢, > O there exists
a positive integer n; = n, (¢,) such that for n > n,

glllk(t, I @llxll /P (@) p(r) dr

bt ) )

Now let T <t. Put k* =min[k: 0 <k < n, kt/n < T]. Then we have

"-lt

_Z_

k=on

(e o) el o/ ) p (0
e (5 (o5 s () ()
+ 3 Lk =) (u(%)uxm.uﬁ/p(%))p(%).

k=k*+1

k* t
e+ ) -
k=o0h
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But, for any given ¢, >0

T
< k*tmax[||xkg/..||,_zp(kt) ko TJ

xmax {[llk(t, Dl (u(x)/p(x)): 0<T< Tin ! <g,

k=0 N

for sufficiently large n. Similarly, for any &5 >0

o )

< sup[lixll 2 p(0): 1> TI( iz, D (u(@)/p(x))de +¢,)

Z

=k*

when n is sufficiently large. Therefore we have

P(f)(j;lllk(t, Ol (u(z)/p () lIxll 2 p(z) de
p(t)(ey +e2+e3sup ixdl 2 p(): t = T])
+sup[lixll, 2 p(0): t = T]p(t) ﬂllk(t, ol (u(z)/p(r)dr
0

< p()[e1+ex+&5 lixll,]+ Asup [lixll 2 p(1): ¢ > T].
In view of the above inequalities we conclude that

p(OIIHX) (D)l 2
<pOIh@ON 2 +p(0) ey +e+83r 1+ Asup[lixll 2 p(t): t > T]

+p(@) [llk(, Dlllv()dr.
0

Thus, by the assumptions of Theorem 3.1 we obtain

lim sup[sup Lo OIHX) @) 52 t = TT]

T—+wo xeU

llm [sup[p(t)llh(t)llbz t2 7]]+(31+32+33’) lim (sup[p(r) t = T))

+4 lim {sup[sup(lIxl2 p(0): ¢ > T)]}

T xeU
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+ lim sup[p(1) {lllk(t, Dl v(x)dz: t > T]
0

T—-wo

< (g1 +&,+&3r)C+ A lim {sup[sup (x|l ; p(®): t > T)]}.

T-x xeU
Letting now ¢, —» 0, &¢; = 0, ¢3 — 0, we get (3.14). Finally, by virtue of (3.13)
and (3.14) we obtain
po(HU) < Apo (U)

which proves that H is a ug-contraction.
In order to complete our proof it suffices to apply Theorem 2.1.

CoroOLLARY 3.1. Let the stochastic functional-integral equation (1.1)
satisfy (i), (i), (v) and (vi) of Theorem 3.1. Moreover, suppose that

(K) lllk (2, DIl < ky () k2 (2),

where k, is a positive differentiable function, k, is a positive function,

(iti,) k,(t)]'kz(t)u(t)dtsA, teR*, 0< A<,
0
and
(ivy) }k;(‘t)p(‘t)v(T)dT=B, teR*, 0< B < .
0
If p is nonincreasing then
(3.15) p(t) = (— Bk, (1))/(k3 (1) k2 (1) v (1))
and
(3.16) Ix (@Il 2 = o((k} () k2 () v (YK} (1)), as t—> 0.

Proof. If pis a nonincreasing function and (K), (iii,), (iv,) are satisfied,
then (ii)) and (iv) hold too. From (iv,) we get (3.15), while (3.16) is a
consequence of Theorem 3.1.

Remark. Note that under the assumptions of Corollary 3.1 with v(t)
=0, we have

Ix@ll,2 = o(1/p(), t— o0,

for any nonincreasing function p such that (v) and (vi) are satisfied.

CoroLLARY 3.2. Suppose that the assumptions (i), (ii), (v), (vi) of Theorem
3.1 and the assumption (K) of Corollary (3.1) is satisfied. Let

(iiiy) w(t) = p(t)ky () [ k2 (1) (u(2)/p(2))de
0
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be positive, differentiable,

sup{w(t): teR*} =D, 0<D<1,

and
w()v(t) < k,(H)u(t), teR™".
Then
(3.17) p(t) = [w(t)/ky ()] exp(— (k1 (1) k2 (D) u(z)/w(2))dr)
0
and

(3.18) lIx (Il 2 = o([ky (t)/w ()T exp(f(ky () k2 (DY u(z)w(1))dt)) as t — co.
0

Proof. (3.17) follows from (iii;) and (3.18) is a consequence of
Theorem 3.1. Moreover, we see that (iii,) implies (iii) and (iv,) gives (iv) as by
(ivy)

p@ flilk(, Dlllv(z)dr < p() k(1) g ka(t)v(r)de
0
< exp([kz (D) v(r)dr— [ (ky (1) ky () u(t)/w(2))dr)
0 0

= exp((j)'(kz(t) (v(@)w(E) =k (D) u(@))w (‘t))d‘t) <1,

which completes the proof.
We now consider the stochastic functional -integral equation (1.2).
THEOREM 3.2. Let the stochastic functional-integral equation (1.2) satisfy
the following conditions:
(i) 17 (t, x (@) Su (O x (@) +v,() P-as.

where the functions u, and v, defined for teR* are nonnegative and

continuous,
(ii) as in Theorem 3.1,

(i) p(®) [Nk =D (4 ()/p(x))dr < Ay, teR™, where 4,€[0, 1),
0

iv) p(®) [llk(¢—=2)lllv,(x)dt < B,, teR"*, and 0 < B, < + o0,
0
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a®

() Lmp() flIk@—olllvy()dr =0, Limp@)lh@ll,2=0,
0

t—a t—a

(vi) as in Theorem 3.1,
(vii) m(?k(t—t;w)f(t, U(t))dt) =0, for anyt=>0 and Ue‘.mcp.
0

Then there exists at least one solution xeC, of (1.2) such that
lim p(¢) Ix (@Il .2 = 0.

t—a

Proof. Define the map F on C, by
(Fx)(t; ) = h(t; @)+ [k(t—1; ®) f (5, X, (0))dz.
0 v

Analogously as in Theorem 3.1 we get
IFx|l, < |lhll,+ Ay l|x,ll + B,
which implies that F maps C, in C,. Moreover, we note that
F: K(®,r)> K(©,r) for r=(|hll,+B,)/(1—-A4,).
We now prove that F is continuous in K(@,r). Let x, yeK(©, ),
without loss of generality we may assume that u,(t) > 1, teR*. Let T > 0 be

fixed and te[0, T]. Taking into account that f is uniformly continuous on
[0, T] xK (@, r), (vi), we have for any given & >0 and ¢, > 0,

IFx—Fyll, < p(9) (j)'lllk(t—f)lll ILf (, x)=f (, yll 2 dt
T
=p(1) glllk(t-f)lll If (x, x)=f (z, yoll 2 dt
+p(?) ! Ik =NIISf (=, x)=f(z, yll 2 de

<e A1 +p(0) ! ik (¢ —o)lll (4, @/ P @) S (z, x)—f (7, ¥l 2 (D) dr

<g Ay +er Ay
which proves that F is continuous. Now put
g: (2) = lllk (¢ = Dlll (uy (2)/p (1)),
g*@) =g, Dlixll2p(), teR*, xeK(O,r).
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By the assumptions | g,(r)dr < oo, [gf(r)dt < oo, te R*. This fact allows us
0 0

to find functions §,, 47 which are nonnegative, decreasing and vanishing at
infinity such that

g.()<g @, g'@®< ar (),

8

[g(drt <0, ([grF(r)dr <oo.
0

o

Hence, we can write

8

[g.()dr = lim h f g, (nh)

a-0t n=1

o

and

ja'(t)dt = lim h E g* (nh).

h"0+ n=1

Moreover, g, can be chosen such that

lim h| Y g (nh)— Z g, (nh) =0

0<h—=0 p=1

and

im h| Z G (nh)— Z g? (nh)} = 0.

0<h—0 n=1

Now fix U < K(€, r). We prove that
(3.19) a(FU)< A ;a(U).

Let T > 0 be fixed. Choose m large enough so that m+1 > T. Then by the
assumptions we have

IFx) (N 2 p (1) < RO 2 () +p(D) [ g7 (1) dr
. 0
+p(1) jlllk(t—T)Ill vy (t)dr

<@l 2 PO+ O] fg. (dt—h ¥ 3* (k)

a=]
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+pOK] 3, &)= 3. g (h]+p()h 3. g oh
+p(0 [Ile(c=0l o, ()

<K, PO+ p(0| {72 ) de—h 3. g° (oh)
+p0h| L b= 3 g2 uh] +p0hr 5 g,

+pO)sup[Ixull 2 P(nh): n>m+11h 3 g,(nh)

n=m+1

+50) [ k(=0 (s

< KOl PO+ p(0)| [ 2 0)ds —h 3. 72 (ub)
+p(r)h|§la:*(nh)—§l af (b} +hrp(©) 3 0, (nh)
+pOspLIxl,: ;¢ > TTh 3 g,(nh

+p() glllk(t—f)lllvl(t)df.

Letting now h— 0, we get
NFx) (Ol 2 p(2) < (1A ()] 2 P(2)
+sup[lixl2p(): t = T1p(t) [ g, (D)de+p() [ llk(t—Hl v, (1) de.
0 0
Hence, by the definition of a, we obtain (3.19).

Now let be given e >0, T > 0, and ¢, se[0, T], |t—s| < &. By (i), (iii), for
xeU c K(©, r) we have

IFx) (@) p () —(Fx)(s) p(sl .2 < P& — PN IR 2+ P () 1A () — B (S]]

+p@—p) [lllkE =Dl (=, x|,z d
0

+p(s) g k(€= —k(s=oll IIf(z, xll 2 de.
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Notice that by the assumptions (iii) and (iv)

lp()—p(G)l Z ik & =IHLS (=, Xl 2 de

<lp®—-p6I(r I lllk (¢t = )lll (u, (z)/p (z)) de + :)ID ik (e = o)lll v, (x) dr)
<min{p(t)~': 0<t < T}|p(t)—p(s)(rd, + B,).
Now
p(s) :}:3 I!Ik(t—T)—k(S-T)III If (z, x)Il 2 dt
<2{minp(t)~': 0<t < T} p(s)(4, r+B,).

Using the above, for any given & >0, ¢, > 0 and sufficiently large T, we
have '

p(s):f k(e =) — k(s =111 (2, x|, de
Ty
< Do) | Ik=0)=k(s=o)l s (/p e

T

+p(s) (j) Ik (t —7)— k(s —1)lll vy (x) d

+p(s) [ Ikt —1)=k(s=DIllIISf (z, x)Il 2 dz
L

<&, 7rp(s) Ty {maxu, (1)/p(r): 0 <1< Ti}
+e,p(s) Tymax {v,(x): 0< 1< Ty} +6,p(s).

Hence, we conclude that

(3.20) Bo(FU) = 0.
Therefore, by (3.19) and (3.20), we obtain
Uo(FU) < 4, po(U)

which proves that F is pu,-contraction and completes the proof.
Remarks. In [8] the following theorem is proved.
THEOREM A. Let the stochastic functional -integral equation

(3.21) x(t; w)=h(t; w)+i'k(t, t; ) f (7, X (w))dr
1)
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satisfy the following conditions:

(i) the mapping x(t; w) — f(t, x,(w)) is a completely continuous map from
C.(R*, }(2, A, P)) into C.(R*, (2, A, P)),

(1) there exist two continuous non-negative real functions g(t) and 1(t)
defined for te R* such that

@  [f(x @) <10, whenever |Ix(; o)l 2 < g(0)

and
(b) Ith(t; w)lILz+£IIIk(t, D l(x)dr < g(1), teR".

Then there exists at least one solution x(t;w) of (3.21) in the space
C.(R*, }(R2, A, P)) such that

Ix(2; @)l 2 < g(2).

We now show that the assumptions of Theorem A imply those ones of
Theorem 3.1.

From the assumptions of Theorem A we conclude that without loss of
generality we can choose a function g(f) such that limg(t) = oo and

supllh(ll 2/g(t) = 1—A4 (A will be defined later), lim(l/g(:)q)tllh(t)lll_2 =0.
t20

Now put p(t) = 1/g(t), u(t) = 1(t)/g (1), v(t) = 0. It is easy to see that (i) of
Theorem A implies (i) and (vi) of Theorem 3.1. (iii) and (iv) are trivially
satisfied. The condition (vi) is satisfied by the above choice of g. From the
assumption (b) we conclude in turn

(&g O) IR @2+ @/g @) [l (t, DIl uE)p()dr < 1,
0

supp(r)uh(r)uLz+siuoa(1/g ) flllk (e, Dl u(@)/p(e)de < 1,
t2 0

t20

1—A+Sugp(t)jlllk(t, Dllu()/p(vdr < 1,
t=> 0

SUPP(t)gIIIk(I, Ditu(x)/p()de < A,

t20
which proves (ii) of Theorem 3.1.
We now consider the stochastic functional -integral equation (1.2) of [8].

THEOREM B. Let the stochastic functional-equation (1.2) satisfy the
following conditions:

(1) supllh(t, w)ll,, <M, MeR",

t20

(i) k(t, w) is P-essentially bounded and continuous as a map from R*
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into Lr (Q’ Q[, W) suCh that
= [Illk(t, w)llldt < 0,
0

(ii)) f: x(t; )= f(t, x,(w)) is a completely continuous map from
C.(R*, }(2, ¥, #) into C.(R*, (2, U, P)) such that ||x(t; o)l , <M+

+Ko(M) imply ||If (1, x, (@)} 2 < ¢(M), teR*, and ¢(M) is a nonnegative
real valued function defined for sufficiently large M.

Then there exists at least one solution x(t; w) of (1.2) in the space
C.(R*, (R, U, P)) such that ||x(t, )|, is bounded.

We now show that the conditions of Theorem B imply the conditions of
Theorem 3.2. Indeed, putting p(1) = 1/ M+ Ko (M), u, (1) =0, v, (1) = @(M),
we easily see that the hypotheses (i)—(vii) in Theorem 3.1 are satisfied.
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