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The degree sequence of a graph is defined as the sequence formed
by the non-negative integers which are the degrees of the vertices of
the graph. The question as to whether or not a graph exists with a given
sequence as its degree sequence has been investigated; a constructive
answer has been given independently by Havel [2] and Hakimi [1].
More recently this question has been generalized by investigating (see [3]
and [4]) whether or not there is a graph with a given degree set (the set
of integers in the degree sequence). In this paper we further generalize
by investigating whether or not there is a graph with a prescribed number
of even and odd vertices. With no further conditions imposed, the answer
is trivial since the graph K, uU(n/2)K, has m even and n odd vertices.
Thus we impose restrictions on the size of the graph. For non-negative
integers m and n, with » even, an m: n graph is defined to be a graph with
m even vertices and n odd vertices. The problem we investigate is: for
which integers & is there an m: »n graph of size k, that is, with k¥ edges?

THEOREM. Let m and n be mon-negative integers with n even. There
18 an m: n graph of size k if and only if

m[2 if m is even,

n (m+n
n[2 if m is odd,

S<k< 9

2 )—d, where d={

with the following exceptions:
if n = 0, there is no such graph of size 1 or 2;
if n =0 and m is odd, there is mo such graph of size

m m
(2) —2  and (2) —1.
Proof. The proof will be divided into four cases, determined by
the values of m and n.
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Case 1. Let m,n > 2.
The graph K,,U(n/2)K, has the minimum size, pamely %/2. The

maximum size,
m-+n
("37) e

is obtained by deleting d mutually non-adjacent edges from K, . ,. We
now show that for each integer & between
n m-+n
— —d
3 and ( 9 )

there is an m: n graph of size k. Let k, be the smallest integer for which
there is an m: n graph of size k, but no such graph of size k,+1. Then
ko> n/2. Let G be an m:n graph of size k,, with A the set of all even
vertices of @, and B the set of all odd vertices of G. We complete the proof
in this case by showing that

ko=(m;”)—¢

Since there is no m: n graph of size k,+1, each vertex in 4 is adjacent
to each vertex in B. Furthermore, all the vertices in A are adjacent or
all the vertices in B are adjacent, for otherwise, if u, v € A are non-adja-
cent and w,x € B are non-adjacent, then G —uw+uv+wxr is an m:n
graph of size k,+1. (In the resulting graph, v € B and = € A.) Thus, exactly
one of A and B has the property that the subgraph induced by it is the
complete graph; suppose that A has this property. In B, no vertex has
degree less than (m+mn—1)—1, for suppose v € V(@) is such that degwv
< m+n —3. Then there are vertices v and w in B for which wv, wv ¢ E(G).
If wwe E(G), then G —uw+wuv+wv is an m:n graph of size k,+1. If
uw ¢ E(@), let r,8 € A. Then G —ur —ws+uv+uw+wv is an m: n graph
of size ky+1. Thus G is the graph K, ,, with some non-adjacent edges
removed. Since G' is an m: n graph, there must be d edges removed, so
that G has size

(m + n) _d

2
Thus

ko=(m;")—¢

Case 2. Let n = 0.
In this case the graph @ has all even vertices. Thus K, has the mini-
mum size. Clearly, there is no m:0 graph of size 1 or 2. Also, if
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m i3 odd, there is a graph of size (7;

fs o ()

The graph K,, ;U K, has the size 3. Let k, be the smallest positive
integer for which there is an m: 0 graph of size k, but no such graph of
size k,+1. Then k, > 3. Let G be an m: 0 graph of size k,. We complete
the proof is this case by showing that

), namely K,,, but none of size

m(2 if m is even,
3 if m is odd.

First note that each vertex in G must be adjacent to at least one
incident vertex of each edge of @, for if u,v,w e V(G) and uw € E(Q)
but wv, vw ¢ E(G), then G — ww+ uv+ vw is an m: 0 graph of size k,+1.
Thus, for any three vertices of @, if two pairs of these vertices are non-
adjacent, so is the third pair. Furthermore, since k,> 3, no vertex is
isolated. If G contains a triple of mutually non-adjacent vertices, then
all other vertices of G are adjacent to each vertex in this triple; suppose
not. Then there are vertices v, u, w, x of G for which uww, ux, wr ¢ E(Q)
and v is not adjacent either to %, w or to x. But v is not isolated, so there
is a vertex ¢t of G for which vt € E(G). Thus ut, wit, zt € E(G), 8o G—ut
—wt+ovw+ve+ux is an m: 0 graph of size ky+1. Thus v is adjacent
to at least one of v, w, and z, so, as above, v is adjacent to each of u, w,
and z, as claimed. Finally, if G contains three mutually non-adjacent
vertices, then each other pair of vertices in G must be adjacent. If not,
let u, v, and w be mutually non-adjacent vertices in G and let s, ¢ e V(G).
Since cach of u, v, w is adjacent to s and ¢, if st ¢ E(G), then G —su —tv -
+ st +uw +ow is an m: 0 graph of size k,+ 1. Thus st € E(G).

In summary, there are three possibilities for @G, namely, K, , K,,— K,,
or K, ,, with some non-adjacent edges removed. If m is even, the m: 0
graph @ must be K, with exactly m/2 edges removed; that is,

m m
- ()5

If m is odd, then G= K,, or G= K, — K,. By the definition of k,,

we have
m
ko == (2) _3.

Ky = (’;‘) —e.

k0\= (?) —c¢, where ¢ = {

In either case,
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Case 3. Let m = 0.
Let G be a 0: n graph of size k, where n is an even integer. Then G
is an n: 0 graph of size
n
(2) k.

By Case 2, this is possible if and only if

n n n n n
e (3) 0 2) s ()

Case 4. Let m = 1.

A 1: 7 graph has n+1 vertices exactly one of which has even degree,
where n is an even integer. Thus K,uU(n/2)K, is a 1: n graph of smallest
size, namely 7»/2. The maximum size,

(55

is obtained by deleting »/2 mutually non-adjacent edges from K, ,. For
n = 2, a graph may have the size 1 or 2. Let n > 4 and let k¥ be an integer,
where n/2 < k < »2/2. Since n > 4,

n+2

2

n n
<(2)—3 and (2)+1>n+3,_

80 that k has to satisfy at least one of the following conditions:

(1) %<k<(’2’)—3,
2
(2) ahl <k<(”2‘)+1,
n? n n
(3) n+3<k<—2—=(2)+—2—.

If % satisfies (1), there is, by Case 3, a 0: n graph G’ of size k. Addition
of a vertex of degree 0 to G’ produces a 1: n graph G of size k. If k satis-
fies (2), then

80, by Case 1, there is a 2: n —2 graph G’ of size k¥ —2. Let u,v € V(@)
be the even vertices and let w ¢ V(@'). Let G be the graph for which

V(@) = V(@)v{w} and E(G)=E(GQ)Y{uw,vw}.
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The graph G is a 1: n graph of size k. If k satisfies (3), then

)=+

3<k—n

N

8o there is an n: 0 graph G’ of size k —n. Then G = @' + K, is a 1: n graph
of size k.

(1]
(2]

(3]
(4]
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