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1. Introduction. Let f be a function from the open upper half plane H
into the Riemann sphere W. A well-known result of Collingwood (see [4],
Theorem 3, p. 8) states that for a continuous function f nearly every z
in the real line K has the property that for nearly every direction 6 € (0, =)
the directional cluster set of f at z in the direction 6 is equal to the total
cluster set of f at . Wilezynski () [7] introduced the notion of a quali-
tative cluster set and obtained analogues of several results previously
known for cluster sets and essential cluster sets [3]-[56]. We supplement [7]
by showing in Section 3 that for functions having the Baire property the
qualitative cluster set analogue of Collingwood’s result is valid. A collec-
tion of four examples is given in Section 4 to indicate the sharpness of this
result. We begin by establishing notation and definitions.

2. Notation and definitions. The functions considered here are those
from the open upper half plane H into the Riemann sphere W. A count-
able basis for the topology on W will be denoted by #. The point (z, 0)
on the real axis R will be denoted by . For x e R, 6 € (0, =) and r > 0
we let

K(®,r) ={zeH: |z—o|<7r}
and
L(x,0,r) = K(x,r)n{z: arg(z—x) = 6}.
Definition 1. Let ¥ < H. Set

Eyy ={&eR: K(x,r)nE is of second category for each r > 0}
and
E; = R—Ey.
For 0 (0, «), set
En(0) ={&eR: L(z,0,r)nE is of second category for each r > 0}

(!) The authors wish to thank Professor Frederick Bagemihl for calling their
attention to the work of W. Wilczynski.
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and
E((0) = BR—Ey(0).
For x € R, set

(E1)(z) = {6 € (0, =): @ € E;(6)}
and
(B1) (%) = (0, n) — (Byy) (@).

Definition 2. Let f: H - W and « e R. The qualitative cluster
set of f at x, Cy(f, ), is the set of all points y € W such that z e f~!(B)y
for every B € # with y € B. For 0 € (0, =) the qualitative directional cluster
set of f at x in the direction 6, C(f, @, 0), is defined in the obvious analogous
manner.

3. The amalogue of Collingwood’s result. In this section we state
and prove a qualitative cluster set analogue (Theorem 2) of Collingwood’s
result mentioned in Section 1. An elementary property of arbitrary functions
is pointed out in Theorem 1. Prior to the proof of each theorem we es-
tablish a lemma dealing with a related property of sets in H.

LEMMA 1. If E <« H and
8 = {&: (Er)(x) 8 of second category},
then 8 < Ey;. '
Proof. Let # € S8 and for each positive r set
A, (x) = {6: L(x, 6,r)nE is of second category}.
Then
(By)(2) < A4,(x).
Consequently, A,.(x) is of second category. Then an app.ication of

the Kuratowski-Ulam theorem (see [6], p. 56) guarantees that K (z,r)nF
is of second category, and hence x € Ey;.

THEOREM 1. Let f: H — W be arbitrary, and for each x € R set
A(z) = {0: Cq(f) z, 0) Cq(f’ m)}

Then A(x) i8 residual for each x € R.

Proof. Suppose the contrary; that is, suppose that there is an z ¢ R
such that A’(x) = (0, =) —A(x) is of second category. Let 0 € A’(x) and
choose a such that

a e Cy(f, =, 0)—Cy(f, ).

Then there is a B € # such that a € B, but BnC,(f, 2) = 9. Hence,
@ ¢ f~'(B), and 0 € (f~'(B)y)(x). Since A’ (x) is of second category and #
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is countable, there is a B ¢ # such that A’'(z)n(f~'(B)y)(«) is of second
category and x ¢ f~'(B);;. This, however, contradicts Lemma 1, and the
theorem is proved.

LEMMA 2. Let E = H have the Baire property. The set
A = {x: (E;)(x) 18 of second category} nEy;

18 of first category.
Proof. As the first case, suppose that F is open. Let x € A and for
each n =1,2,... set

D, (x) = {6: EnL(x,0,n"") is of first category}.

Notice that EnL(z, 6,n""') =@ for 6 € d,(x). Clearly, each @D, (x)
is closed, and

(By) (@) = Q @, ().

Since (E;)(x) is of second category, there is an =, such that P, (2)
contains an interval. Let a be a rational number in that interval. Then
x € E;;nE{(a). However, by applying Lemma 3 in [7] it is seen that the
set Eiin [UEI(ﬂ)] (where the union is taken over all rational numbers g
in (0, =)) is of first category. Consequently, A is of first category if E is
open.

Now consider the general case where £ = GAQ (A denotes the symme-
tric difference), G being open and @ of first category. We then have FE;
= @;. In view of this and the above case, we note that in order to show
that A is of first category it suffices to show that the set

B = An{x: (Gy)(x) is of first category}

is of first category.
In fact, we can show that B is empty. For suppose x € B. For each
n=1,2,... set
D, (x) = {0: EnL(z, 0,n™") is of first category}.
Choose n, such that &, («) is of second category. We have
?,.(2) < {6: (G—Q)nL(x, 0,n™") is of first category}.

However, {6: GNAL(x, 0,n~") is of first category} is a first category
set as it is contained in (Gy)(x). In light of the Kuratowski-Ulam theorem
(see [6], p. 66) the two sets

{6: GAL(x, 0,n") is of first category}
and
{0: (@—Q)nL(x,0,n7") is of first category}
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differ by at most a first category set. Hence the latter is also of first cate-
gory, implying that @, () is of first category. This contradiction shows
that B is empty, and the proof is complete.

Now we can readily prove our main result.

THEOREM 2. Let f: H -~ W have the Baire property and for each
x e R set

F(m) = {0: Cq(f7 :L') = Cq(f7w7 0)}

Then I'(x) ts residual for mearly every x € R.
Proof. Let

C = {&: ‘I’*(x) is of second category},
where
I'*(x) = {8: Co(f,2) & Cy(f, =, 0)}.

Let z € C and y € I'*(z). Then there is a B € # such that
xef (B and xef Y(B)(y).

Since I'* (x) is of second category, there is a B € # such that x € f~1(B);;
and ( fH(B))(x) is of second category. If C is of second category, then
there is & B € # such that

{@: (f71(B)y)(») is of second category} nf~'(B)y;

is of second category. This contradicts Lemma 2 and, consequently, C
must be of first category. '
This together with Theorem 1 completes the proof.

4. Examples. In this section, we present four examples which comple-
ment the theorems of Section 3.

Example 1. There exists a measurable f: H — R such that, for every
real x, Co(f, ) & Cy(f, x, 0) for every direction 0.

Proof. Theorem 15.5 in [4], p. 57, guarantees that there is a set
which is of second category in the unit square I* = [0,1]x [0, 1] and
which has the property that mo three points of E are collinear. Let @
be a measure zero set which is residual in I* and let K = EnQ. Then K
is a measure zero set which is of second category in IZ.

We extend K to a measure zero set which is of second category in
every disc by placing a copy of K in every rational subsquare of H as
follows.

Let -

K = {riz+(ro+rsi): 2e K} (@ = l/_—_l)

Traor3
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\
for each triple (r,, r,, 75) of rational numbers for which r, and r; are posi-

tive. Then set
8 = UK,

17273’
where the union is taken over rational triples (r,, 7., r3) of the appropriate
form. Since 8 is the denumerable union of sets of measure zero, S is of
measure zero, and S is of second category in every disc in H. Further, S
contains at most denumerably many points on any given line.

Now we define f: H — {0,1} by ]

0 if xef,
f(z)={1 if g8,

Then, for every real number # we have 0 € C,(f, ), but, as § is at
most denumerable on every line, C,(f, x, 0) = {1} for every direction 0,
and the first example is established.

Example 2. There is a continuous f: H — [0,1] such that, for every
real x, O, (f,x) & Cy(f, x, 0) for almost every direction 0.

Proof. Let {r,,7,,...} be an enumeration of the rational numbers.
For each n =1, 2, ... we construct two dises, D, , and D, ,, centered at
(r,, 1/n), with radii [1/n]tan(wx/2"*?) and [1/2n]tan(x/2"*?), respectively.
We take D, , to be closed, and D, , to be open. Let

A=UD,, and B=H-\{JD,,.
n=1 n=1

Then each of A and B is a closed subset of H and, consequently,
there is a continuous function f: H —[0,1] such that f(4) = {0} and
f(B) = {1}.

Let D denote a closed disc contained in H, and let x € R. We let
o(x, D) denote that sector in H which has  as an initial point and whose
bounding rays are tangent to D. The directions of the rays bounding
g(x, D) are denoted by O0,(x,D) and 0,(z,D), where 0 < 6,(x, D)
< Oy(2, D)< =. N

If v e R, then

[6:(x, D, ;) — 6, (x, -Dn.,l)] <

and hepce
@l(w) = (07 TC)_ L;)l(ol(wi Dn,l)7 02(w7 Dn,l))

has measure at least =/2. Further, if 6 € ©'(z), then the ray L(x, 0) at «
in the direction 6 misses every disc D,, (n =1,2,...), and hence the

6 — Colloquium Mathematicum XXXVII.2
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cluster set of f at « in the direction 6 is {1}. Let

@2(37) = (0, ™) — LJz(ol(a’; -Dn,l)7 0z (, Dn,l))'
Then ©*(x) has measure at least 3w /4, and if 0 € @*(x), then L(x, 6)
misses every disc D, , (» = 2, 3, ...), and again the cluster set at « in the
direction 0 is {1}. Inductively, then, we set

@k(w) = (0, ) — L)k(ol(w7 Dn,l)’ 0, (x, -Dn,l))
and note that both the measure of @*(x) is at least (2¥ —1)=/2* and that
if 6 € @%(x), then the cluster set of f in the direction 6 is {1}. It follows
that if

6(x) = U 6*(a),

n=1
then both the measure of @ (x) is =, and that if 6 € @ (z), then the cluster
set of f at « in the direction 0 is {1}. Further, every semidisc K (x, r) con-
tains a disc of the form D, , and an open subset of B. Hence, {0,1}
< Cy(f, ), thus establishing the result.

Remark. If we use C(f, z, 6) to denote the ordinary cluster set
of f at # in the direction 6, then Example 2 shows:

There is a continuous function f: H — [0, 1] such that, for every real x,
Colf, =) € O(f, @, 6) for almost every direction 0.

This demonstrates a striking difference in the behavior of essential
cluster sets and qualitative cluster sets of continuous functions as evi-
denced by the following theorem from [1] where the subscript e indicates
an essential cluster set.

THEOREM BEH. Let f: H — W be continuous and for each x € R set
O(x) = {6: Co(f, ») = C(f, =, 0)}.

Then O(z) is both residual and of full Lebesgue measure for almost
every and mearly every x € R.

Example 3. There is a continuous f: H - R such that, for each
point x of a set K of positive measure,

{0: Oq(f’ z) ¢ Cq(f7 Z, 0)}
18 of second category.
Proof. Let K be a closed nowhere dense subset of B with positive
measure. Let {I,: n =1,2, ...} be an enumeration of the intervals contiguous

to K, and let T, be the closed equilateral triangular region in H whose base
is I,. At each point # € K let W, denote the closed unbounded wedge in H
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having « as an initial point and bounding rays in the directions 2= /5
and 3x/5. If

zelUl,
n=1
is the vertex of an equilateral triangle having its base on the z-axis, then

that base is contained in | J I,. It follows, then, that (J 7, and | W,

n=1 n=1 zeR
are mutually exclusive closed subsets of H.

There is a continuous f: H — [0, 1] such that

0 forzeU U T,,

f2) = =t
1 forzeYW,.

zeR

As K is nowhere dense and each set T, contains an open subset,
1eC,(f,x) for every # € K. However, for 0 ¢€[2n/5,3x/6] and v e K
we have C,(f,z, 6) = {0}, and the cxample is established.

Example 4. Let I'(x) be as in Theorem 2. Then there is a continu-
ous f: H — W such that () I'(x) is of first category for each residual set
in R. =<Q

This result follows directly from the following statement ([2], The-
orem 2) wherein @(x) is as in Theorem BEH. )

THEOREM HEB. There is a continuous f: H — W such that () O (x)
18 of first category for each residual set Q in R. =Q
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