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ON TRANSITIVE OPERATIONS IN ABSTRACT ALGEBRAS

BY

J. ANUSIAK (WROCLAW)

An n-ary operation fis said to be transitive if for each pair ¢, je{l1, ..., n}
there exists a permutation p,,...,p, of numbers 1,...,n such that
p; =J and

F@yy oony @) = f(2p), ey Bp, ).

In other words, f is called transitive if the group of symmetry of f is
trangitive.

In this paper we give a generalization of some results, proved earlier
by E. Marczewski and K. Urbanik; concerning symmetrical and quasi-
-symmetrical operations. It is also a continuation of investigations of
cyclic operations by J. Plonka.

For any abstract algebra U we denote by S () the set of all integers
n > 2 for which there exists an n-ary algebraic operation in U depending
on every variable.

Marczewski proved ([1], Corollary 3) the following theorem:

If there are no algebraic constants in algebra %A = (4;f), where f
is k-ary quasi-symmetrical operation in U (k> 2), then the set S(A)
contains arithmetical progression k+j(k—1), (j =0,1,2,...).

Urbanik proved ([5], Theorem 1), under the same assumptions,
that the set S(A) contains arithmetical progression k+24j(k—1)
(y=0,1,2,...), and that if, moreover, S(UA) is an arithmetical pro-
gression itself, then S(A) = {2,3,...}, {3,4,...} or {3,5,...} ([5],
Theorem 2).

Plonka [3] proved that if f is cyclic, then S(U)> {1,3,...}. We
shall prove that if f is a k-ary transitive operation (to be quasi-symme-
trical or cyclic are stronger conditions for f than to be transitive), then
S(A;f) is the union of an arbitrary set of even integers and of the set
of all odd integers. In our construction f will be even symmetrical, thus
assuming quasi-symmetry or symmetry does not give a new thesis. If
a transitive operation f depends on an even number of variables, then
S ={2,3,...} or {3,4,...}.
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Our conclusions from Lemma 1 can be obtained also from results of
Plonka [4].

We assume throughout the paper that no algebra has constant
operations. Put F°(z) = x, F**'(x) = f(F*(=), ..., F*(x)) for any ope-
ration f(xy,...,®,). |A| will denote the number of elements in A.

LemMMA 1. Let f(®y,...,2,) (n=3) be a transitive operation in an
algebra N. If h(ml, ceey Lp_qy BT (a:k)) 18 an algebraic operation depending
on all variables @y, ..., xy, then there ewists an indep ie{l,...,n} such
that

h(@1y eeey By, F(FH(@), oony F2 (), B (Y), B1(2), o0y FP2(2)),

where F"~'(y) stands in the i-th place in f, depends on all k+2 variables
Byyeory Tp_1y @y Y,2 (r =1,2,...). .

Proof. Examine the operation
G(Bryeees Bp_19 2y Y,y 2)
= h(wu seey a’k—uf(Fr_k(m); Fly), F (), ..., Fr—l(z)))

Putting # = y = 2 into g we see that g depends on @y, ..., #;_, and
on at least one of », y,z. Put

9i(®1y ooy By, @,y 2)
= h(wly ceey xk—l’f(Fr_l(w)’ very I N (@), 7 (2), ., Fr—l(z)))a
where F"~!(x) is repeated j times and F"!(2) is repeated m—j times
Gg=1,...,m).
(a) If g does not depend on x, then g(@y, ..., Xy_,, ¥, 2,2) = g,(®4, ...

ceey Xy_q1, %, 2) also does not depend on z, but g, must depend on z. From
the transitivity of f we infer that f(¢,...,%,8) =f(s,¢,...,%). Thus

On1(@ry ooy Bp_1y @y 2) = G(@yy ooy Bp_1, Zy &y 2) = g(@yy ooey By_1y 2, 2, T)

depends on « and does not depend on z. Therefore there exists an index
ie{l,...,n} such that

(1) i1 ( @1y ooy Tpqy @32) = §'(Xyy evvy By_qy 2)
does not depend on » and
(2) 9i(@1yoevy By @9 2) = 9" (B1y ooy Tp_yy @)
does not depend on z. It follows that the operation
U(Dyy oeny w,,_'l, Z,Y,2)
= h(wl, cory Tpyy S (FH@),y ooy TN (@), BT N(y), B (2), ...,F"‘(z))),

where F"~!(y) stands in the i-th place in f, depends on @;, ..., T3_,, 2, ¥, 2,



TRANSITIVE OPERATIONS 17

because, putting y = 2z into u, we get u(Lyy ..., Lp_1, Ly 2,2) = ¢ (L1, ...
ceey Tp_1y 2) BY (1), and (putting y = @) u (@, ..., 24_;, @, @,2) =g (24, ...
vory Bp_yy @) DY (2).

By the transitivity of f we have f(¢,s,%,...,t) = f(s,t,...,t) and
so we can proceed in the same way if g does not depend on .

(b) If now g does not depend on 2, but depend on x and y, then
Go(®1y eovy Ty, @y 2) = g(Tyy «vvy Bp_q, T, £, 2) does not depend on 2. On
the other hand, putting #z = ¥ in ¢, we infer that the operation g,(z,, ...
veoy Ty_q, ¢, y) depends on x and, by the transitivity of f, the operation
Gn(®yy «ooy®y_y, @, 2) depends on z. Therefore there exists an 7e{2,...,n}
such that

(3) Gi1(@yy evey By gy Xy 2) does not depend on =z,
(4) 9i(@yy evey Xy_1y @, 2) depends on z.

Putting F"~!(y) in the i-th place in f, we get an operation

U(Lyy eoeyBp_1y By Y, R)

= 1By vey By F(EH (@), ooy (@), F(y), BP0 (R, ey BP0 (2)))
depending on z,, ..., %;_;, %, ¥, 2, because, by (3),

U(Dyy eoey Tp_19892,8) = G _1(®1y o0y Ty, T, R)
does not depend on z, and, by (4),
U(Lyy eoey Bpqy By Xy 2) = Gi(Byy eovy Tp_qy By 2)

depends on =z.

Remark. If r can be arbitrarily large, then one can show by induc-
tion that there are in W operations depending on k-+2¢ variables
(¢t =1,2,...).

, COROLLARY. If f(xy,y...,%,), n =3, 18 a transitive operation in A,
then S(A) o {3,5,...}. _

Proof. F"*(z) = F(F'(w)) depends on z for every integer r. Lemma 1
with Fr+!(x) in the place of h yields the thesis.

LEMMA 2. Let f(2y, ..., %,) be a transitive operation in W. If f, after
identification of all variables to two, depends on one of them only, then there
exists an te{2,...,n} such that the operation

g(@,y,2) =f(e,...,2,9,2,...,2),
where y stands in the i-th place, depend.é on x,y,?.
Moreover, if f(x,y,...,y) = F(z), then g satisfies
(5) g, y,9) =9y, 2,y) =9(y,y,2) = G(=) = F()

2 — Colloquium Mathematicum XXV.1



18 J. ANUSIAK

and if f(@,y,...,y) = F(y), then g satisfies

(6) 9@, y,y) =9(y,,9) =9(,9,2) =G(y) =F(y).
Proof. Put f;(x,?) = f(»,,...,,), where o, =2, = ... = x; = @,
X, = ... =, =2. By assumption, f,(»,?) =f(x,%2,...,2) depends

only on 2 or only on z.
Let f,(x,2) = F(x) do not depend on z. By the transitivity of f
we have f,(r,2) = F(2). Thus there exists an 2¢{2,...,n} such that

fio(wy2) = F(x) and fi(2,2) = F(2).
Put g¢g(x,y,2) =f(®y,...,®,), where x, =... =2,_, =z, 2; =,
By = ... =T, =2. We have '
g(w,2,2) =fi_y(#,2) = F(2), g(o,,2) =fi(#,2) = F(2)
and, by the transitivity of f,

g@,y,o) =f@,...,2,9,2,...,2) = F(y);

thus ¢ satisfies (5).

If f(x,y,...,y) = F(y), we can in the same way obtain an operation
satisfying (6). Formulas (5) or (6) give then directly the desired depen-
dence on variables.

LevmmA 3. If g(x,, ., ¥3) i8 an operation satysfying, for any x,yeA,
the equalities

g(x’w’?/) =g(wiy7w) :-g(y’m7m) =G(w)7

then the operation
U(Lyy Lay B3y By) = g(wn g(®sy @3, 21), Gr(wA;))

depends on x,, Ty, %3, 2, for each r =1,2, ...
Proof. Putting #, = 2; = 2 we get

U(2y, @, @, B,) = 9(-’171, g(z, 2, z,), Gr(m4)) = g(wly G(x), Gr(w:t))

and so % depends on z, and »,. Let now «, = »,. Since

g(a’n g(a{'n L3y 1), Gr(“&)) = g(wly G (), Gr(“"q.)) # g(wlr G (3), G'( .’174)),

u depends on x,. The same for z,.

LEMMA 4. Let f(®yy ..., %y,), B =2, be a transitive operation in U.
If f, after identification of all variables to two, depends on one of them only,
then S(A) > {3,4,...}.

Proof. By assumption, f(z, ¥, ..., %) = F(y)or f(z,y,...,y) = F(x).
Since in the first case Lemmas 2, 3 and 1 (see also Corollary) yield the
thesis, consider the second case: f(z,¥,...,¥) = F(x).- By Lemma 2,
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there is in A an operation g(x, vy, 2) satisfying (5). From the transitivity
of f we have

(7) J, ..., 9, 2,9,...,9) = F(x),

where x stands in any place.

Examine operations f;(z,2) =f(x,...,2,2,...,2) (¢ =1,...,2n),
where the first ¢ variables in f are equal to # and the remaining ones to z.

There are three possibilities:

(a) f2i+1(a’” 2) = F(x), fou(®w,2) = F(2) for ¢ =0,...,n—1,

(b) there exists a je{2,...,2n—1} with f;_,(x, ?2) = f;(z, 2) = F(x),

(c) there exists a je{3,...,2n} with f;_,(z,2) = f;(z,2) = F(2).

In the case (a) we have f,, ,(x,2) = F(x). On the other hand, by
(1) fon_1(zy2) = f(2,...,2,2) = F(2). Thus case (a) is impossible.

In the case (b) put h(z,y,?) = f(x,...,2,9,2,...,2), where the
first j —1 variables in f are equal to x. Operation & satisfies

h(z,y,y) =fj—1("”7?/) = F(x), h(z,y,x) = F(y),
h(z,x,2) = fi(v,2) = F(x).

In view of (8), F"(h(z,y,2)) and h(F"(x), F"(y), F"(z)) depend on
z,y,2 (r =1,2,...). Examine the following operation w«:

(8)

(2, Doy B3y #,) = g(ﬂh, gy h(®1, 5, Fr(%)})-
If », = x,, then, by (5),
(9)  wu(wy, @2 4, @,) = .‘](“f'z’ Ty b (2, 25, Fr(“&))) = F(h (wz’ T3y Fr(%)))-

The right-hand side of (9) depends on z,, x4, ,, and thus % depends
on x, and «,. Inserting ®, = h(wy, @5, F"(2,)) in u, we infer, by (5) and
(9), that % depends on x,, because

“(wly h(wh T3, Fr(%))y T3y a74) = F(x,) # F(h(“'u Ty, Fr(“&)))-
Now put x, = x; into u. We obtain, by (8), the equality
(10)  u(wy, @o, @3, @) = g(wa’ Loy h(wa} T3,y Fr(‘%.))) ='g(a"37 2% F(.’Ds)).

Operation on the right-hand side of (10) does not depend on «,.
On the other hand, according to (9), w(w,,®,, x5, x,) depends on x,,
and so v depends also on »,. Lemma 1 applied successively to operations
g and u in the place of h gives thesis. This finishes the proof in the
case (b).

In the case (¢) put h,(2,vy,2) = f(»,...,®,¥,2,...,2), where the
first j —1 variables of f are equal to x. By assumption of (¢) and (7),
operation h, has the properties h,(z, vy, y) = f;_,(®, y) = F(y), hy(®, y, x)
= F(y), hi(x,w,2) = f;(x,2) = F(2). Since the operation k(z,y,?)
= h,(2, vy, x) satisfies (8), the case (¢) can be reduced to that of (b).
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LEMMA b. Let f(wy,y...,@,) (n>38) be a transitive operation in A.
If 8(A) +{2,3,...}, then there exists an integer r such that f(F"(z,), ...
vooy F"(m,)) depends, after identification of all variables ®,,...,w, to two,
on one of them only.

Proof. If for any r from f(F"(x,),..., F"(x,)) we could obtain, by
the identification of variables, an operation k(¥ (x), F"(y)) depending
on two variables, then Lemma 1 would give S(U) = {2, 4,...} and so,
by Corollary, S(A) = {2, 3,...}. A contradiction.

THEOREM 1. If in an algebra W without constant operations there is
a tramsitive operation depending on an even number of variables, then
S(A) o {3,4,...}:

Proof. For binary operations transitivity is equivalent to symmetry.
Plonka [2] proved that if in an algebra U there is a binary symmetrical
operation, then S(A) = {2, 3, ...}. If there is in A a transitive operation
f(@y,y .ovy @yp), » =2, then Lemma 4, applied either to f or to f(F’(wl),
«o.y F"(2,,)) from Lemma 5, gives the thesis.

THEOREM 2. For any set T of even integers there exisis an algebra
W = (A;f) such that the fundamental operation f is ternary symmetrical
and S(N) is equal to the union of T and of the set of all odd integers. More-
over, for each k = 1,2, ..., there is in W a symmelrical operation depending
on 2k-+1 variables.

Proof. Take the set A = {a, b, a,, @z, ..., €1y C5,...,2,4, ...}, where
sets {a}, {b}, {ay, ...}, {C1,...} {2,...} are pairwise disjoint and define
on A the operation

b if ; = b for the odd number of ’s,

Dyy By Ty) =
9(@1, @3, ) a otherwige.

It is easy to see that g is symmetrical, satisfies (5), and that for each
k =2,3,... the operations

Ga(®yy Tay T3) = §(Lay X2y 1),
Jorr1( @1y oooy Bagyy) = g(m2k+17 Doky Jar—1(L1y «+ oy -’”zk-l))

satisfy the condition

b if #; = b for the odd number of i’s,
Goi1( &1y ooy Bopyy) =

otherwise.

These g,..,(k =1,2,...) are symmetrical and, of course, depend
ON %y, ..., Ty, ANy non-trivial algebraic operation in (4; g) is equal to
9sx4, for some k.
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Now we shall define the operation f.
BT=0,patf=9g. T = {t,,%,...} (finite or not), put (argu-
ments in f can be placed in any order):

flay, a5 a1) =2,  flas, a4, a3) = ¢1,  f(as, a6, ¢,) = 4,
f(a'g’a'a’aw) = Cgy  [(@11y @19y C2) = €35,  f(ay, Gq5, C3) = 6, teey
J(@misy Omysy Omyp1) = Cuy1s  FOmpsy Gnysy Cnpr) = Cnygy  -ovy
J(@miok—15 Omysk—25 Cnii—2) = Cnik—1s
@iy Cmpons Crik—1) =2k, ..oy

where m = m(k) = k(k—1), n = n(k) = 3(k—2)(k—1). In the remaining
cases pub f(@y, @5, ¥3) = g(@y, @z, ).

If 2k ¢T, we delete the equalities from f(...) = 2(k—1) to f(...) = 2k,
but without the first of them.

Now define operations fy,,,(®y, ... #yy,), algebraic in A = (4;f),
as follows:

fa(@y, @2, ) = f(23, 2,5, @,),
Jorr1(@yy -0y Zogey1) =f("”2k+17 Dorey far—1 (@1 -0y fvzk—l)) (k=2,3,...).

In other words, for ¥ =1,2,..., we have

Jargr = f(‘vzkﬂ, Dok f(wzk—l’ Bog—zs [ (-3 f (@5 Tay @) ))
Put
Jar(®1, ¥ Pay;) =f2k+1("’71’ Ly «eey Doy By)e

In this way we obtain for 2keT operations f,, satisfying

(11) fzk(ak(k—l)+1’ ooy Oy yy) = 2k.

From the symmetry of f, variables x,, and x,,;, (1<:<k—1)
commute in f,, and these cycles generate the whole group of symmetry

of fy.
Finally, observe that

(12)  for(@ry ooy Bop) = Gop—1(Bay ovy D) I {2, ..., 2y} # {@1y o0y Gy}

Operations f,, depend on z,,...,x,,, because, putting in the left-
-hand side of (11) x; = a instead of ¢e{l,...,2k}, we obtain on the
right-hand side a instead of 2k. Observe that any superposition of ternary
operation f has an odd number of variables. If h(x,, ..., #,;) is an algebraic
operation in W = (4;f), then, in any formula determining %, some vari-
ables are repeated an even number of times (formally, f is superposed with
a trivial operation). If in h there is an even number of repetitions, differ-
ent from that in f,,, then, by the definition of f, » does not depend on



22 J. ANUSIAK

repeated variables. Thus any algebraic operation depending on 2k varia-
bles is equal to f,,. Finally, observe that

E(f(wu T2y wa)) =f(F(w1)’ F(mz)’ F(ws)) = g($1, Zyy L) .

Thus g is an algebraic operation in U and operations g, , are the
wanted symmetrical operations depending on 2k-+1 variables for each
k=1,2,... This completes the proof.

If f is a k-ary, where k is an even, cyclic operation, then f generates
a binary symmetrical operation. We shall show that there exists a two-
-element idempotent algebra with a transitive operation of six variables
and without binary non-trivial operations.

Example. Put A = (0, 1;f), where
fl@yy oy @) = if |{i: o, =2} >3
and

fl,o,2,9,9,9) =fle,z,y,2,9,9) =f(,y,2,9,9, )
=fly,z,y,2,9,2) =fly,2,2,y,2,9)
=fle,y,9,2,2,9) =f(=,9,9, ¥y, %, 2)
=fly,y, 2, 2,2,9) = f(y,2,9,9,, o)
=f(y,y,w,_w,y,w) =x.

Operation f is transitive. The group of symmetry of f is generated
by (1,2,3)(4,5,6) and (1,2)(3,4)5,6. Let » be a k-ary operation
(k > 2). For each subset P of {1,..., k} we define a binary operation hp
by

hp (@, y) = f(®1y .05 Ti),
where #; = x if ieP, and x; = y if i¢P. Observe that fp(®, y) = € (#, y),
j =1, 2, where, for any =, trivial operations e; are defined by ¢} (x,, ..., ,)
=x;(j=1,...,m). Let h; (j =1, ..., n) be k-ary operations on 4 and &
be an n-ary operation on A. Let hjp(#,y) (j =1,...,n) be equal to a

trivial operation for each P < {1, ..., %} and let also hy(x,y) be equal
to a trivial operation for any @ < {1,...,n}. Examine the superposition

U(Dyy oevy @) = h(hyy ooy hy) @y .00y @)
Observe that
up(®,y) = h(lypy ...y hyp) (@, y) = ho(2, y)

for some @ < {1,...,n} is a trivial operation. Thus in our algebra
A = (4;f) each binary operation is trivial and 2¢S(%).

Finally, observe that in this example the group of symmetry of f
is doubly transitive and f is quasi-symmetrical.
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