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CHOW RING OF PROJECTIVE NON-SINGULAR
TORUS EMBEDDING

BY

J. JURKIEWICZ (WARSZAWA)

Let X be an n-dimensional torus embedding over an algebraically
closed field %, and let 8 be the corresponding finite rational polyhedral
partial (f.r.p.p.) decomposition of N, ~ R" which will be also called the
(contoal) complex (see [7], Chapter 1, § 1,2, for definitions). Our aim is to
describe the Chow ring and the l-adic cohomology of X in terms of the
complex 8 in the case of a projective non-singular X. Some results for the
case of a complete X are also given.

1. A ring associated with the conical complex. Let us fix an f.r.p.p.
decomposition S of R™ such that the corresponding variety X = Xg
is complete and non-singular. Let a,, a,,..., a, be the one-dimensional
faces of § (the letter a will be reserved for faces of dimension 1, and
for faces of dimension n). Each semigroup a;nZ" is spanned by an element
(@15 Qogy «.., @y;) of Z". We attach to S the ring

(%) Z[U,, Uy,..., U,

where U; are variables corresponding to a;, I is the homogeneous ideal

generated by linear forms Y a,U; (¢ =1,2,...,n) and monomials
j=1

U,,U;, ... U;, such that (a;, :z, .1 +++» @;,) are minimal sequences spanning

no face in 8.

The ring (*) will be denoted by Z[U]/I. It has a gradation such
that the cosets of U; are of degree 1. The Theorem from Section 2 states
that Z[U]/I is just the Chow ring of X.

Let us describe some properties of Z[U]/I.

For two cones o, v € 8 we write ¢ < 7 if ¢ is a face of 7, and we write
o non< 7 if it is not. To each ¢ € §, different from {0}, there corresponds
a monomial of the form

Pd = Ulejzooo Uj.,
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where j,, js, ..., j, are such indices that a; , a;,, ..., a;, span o. For example,
ch = U;. The cosets of U,, U,,...,P, in Z[U]/I will be denoted by
Uy Ugy ...y P,y Tespectively. For the cone {0} we set p, = 1.
LEMMA 1 (“shifting away’ lemma). Let 0, o, » be elements of S such
that 0 <o < w and 0 # o. Then there ewist cones o, € 8 and integers o
such that
dimo; = dime  for each 1,

P, = 2 Py DON< @ for each 1.
1

Proof. It suffices to consider the case where dimf = dimo—1
and dimw = » (8 is complete!). By changing the numeration we may
assume that o is spanned by a,, ay, ..., a,, the face o by a,, a,, ..., a,,
where 8 < n, and 6 by a,, a;, ..., a,. We have

au'u1+ e -I-al,.‘u, = 0’ [an caee aln]

by non-singularity of X. Multiplying this system of equations by p, =
Ugls ... , and resolving it, we get
Py = Uy ... Uy = 2 Sty ... Uy,
le=n+l

where ¢, are integers. The element wu, ... %, is null if @, ay, ..., a, 8pan
no face in § (here I > 8). In other case let us denote this face by ¢;,. Then
Yy ... %, = P, 8nd the assertion of the lemma is satisfied by the ele-
ments o;.

The monomial UtU32 ... Ul is called radical if 0 < ry, 75, ..., r,< 1.
The coset of such a monomial will be called a radical elemeni. Then an
element of Z[U]/I is radical iff it is of the form p, for some o€ 8.

LeMMA 2. The Z-module Z[U]/I is spanned by radical elements.

Proof. For ¢ =0,1,2,..., let (Z[U]/I), denote the submodule
of ¢g-th degree. Suppose that for some ¢ the module (Z[U]/I),_, is spanned
by radical elements. Then the module (Z[U]/I), is spanned by elements
of the form ww (j =1,2,...,7), where we(Z[U]/I),., is radical,
say w = p, for 0 € 8. If a;non< o, then wuuw is radical. In other case,
Lemma 1 can be applied to the faces {0} < a; < ¢. In other words,
a; can be shifted away from o.

We have
uJ = Zc,u,,
]

where integers ! are such that onon< ¢. The elements uw are either
null or radical. Thus the assertion of the lemma holds for ¢ +1.
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Definition. Let w € 8, dimw = %, and ¢ < . Let us set
Coo ={re8: 0 <1< }.

By cells in § we mean the subsets of 8 of the form C, , for some o
and . A filtration in 8 is & sequence of subcomplexes

F):8=8,28,2...208, =0
such that

(1) 8, are closed, i.e. (¢ €8;,7<0) = (ve8,),

(2) for each j, 8;.,—8; is a cell.

Let a cellular decomposition of 8 be given, that is to say a set
{C;, Cyy ..., Cp} of disjoint cells such that 8 = (_JC;. The decomposition
is said to be filtrable if there exists a filtration (F) of 8 such that §,,, —§;
is a cell of that decomposition for all j.

ProPOSITION 1. Let a filtration (F) of 8 be given and let 8;—8,_,
=0, -y where dimw; = n anda<wj for 5 =1,2,...,m. Then the
ring Z[U]/I attached to 8 by (=), i8 generated, as aZ-modulo bY Poys Poys -+

-y Po,, (in fact, those elements form a basis of Z[U]/I, as it w111 fo]low
from the proof of the Theorem in Section 2).

Proof. By Lemma 2 it suffices to show that for each o € § the ele-

ment p, is of the form g;‘ dxp,,, where d, are integers. Suppose that this

Fig. 1. The spherical complex corresponding to the 3-dimensional conical complex 8§;

conclusion holds for all ¢ € 8 — 8; for some fixed j. We prove that it also
does for 0 € 8§ —8;_,. Let ¢ € 8;—8,_,. Then, applying Lemma 1 to the
triple o; < 0 < w;, we have

= 2 olp ‘l"

where o; < 7;, and hence 7, ¢ 8;_,. Otherwise, we have 7;non< w;, and
hence 7; ¢ §; —8;_, (see Fig. 1) for all I. Then 7, ¢ 8; and P, 18 a suitable
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combination for all I. Then so is p, and the proof follows by the ‘‘decreasing
induction” on j.
Remark. We compare cellular decompositions of S and those of Xg.

Since
XS = U o°,
oeS
for an arbitrary subset 8’ = 8 we can put
X¢ =JO
oe8’

(warning: the affine torus embedding X, corresponding to a cone o is not
equal to X,). Those are locally closed T-invariant subschemes of X.
In particular, let C = O, , be a cell in 8. It follows easily from the non-
singularity of X that X, is an affine space. Then each cellular decomposi-
tion of 8 corresponds to a cellular decomposition of X.

A cellular decomposition of X,

X=UWn

$=1
is said to be filirable if there exists a sequence
#): X =X,oX,>...0X, =0

of closed subschemes of X such that X, —X;,, is a cell of the decomposi-
tion forj = 0, 1, ..., m —1 (cf. Definition 2 of [2]). Clearly, a decomposition
of 8 is filtrable iff the corresponding decomposition of X = Xy is filtrable.
More precisely, to a filtration (F) of 8 there corresponds a filtration
(F) of X such that

X, = X(s_sj) = X—ij,
and then

Xj —X’+1 = X(sj+1_sj)'

2. Chow ring of a projective toroidal embedding. Let us study the
relation between the ring Z[U]/I attached to S and the ring Cp,(Xs)
of classes of cycles on Xg, i.e. the Chow ring of X. To each face c € §
the orbit O” = X corresponds (see [7]). Its closure is a cycle, and we set

cl(0) 1= cligy (0%) € Chay(X).

The invariant divisors 0% will be denoted by D, for j =1,2,...,r.
Consider the homomorphism

2:Z[Us, Uy, ..y U] > Chay(X), Uy cl(ay) = el(D)).

The linear generators of the ideal I are in ker y. Indeed, let us consider
the form (6,,¢sy...,¢,) —>¢; on Z" (this last group is identified with
Hom(@,,, T')). Let &, denote the character on T corresponding to this
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form (see [7]). For the rational function Z; on X and the subvariety D;,
Va;le(a") = aﬂ.
Hence )’ a;D; is a principal divisor for ¢ =1, 2,...,n.

Clea,rly,Jmonomia,l generators of I are also in kery, and hence y can
be factorized by a homomorphism % defined on Z[U]/I.

Let I be a number prime to char(k), and H*(X, Q,) the algebra of
l-adic cohomology. Consider the following diagram (see [8], the symbol X
is omitted):

ZIUYI ——> Oy —2— Cog 1> 0}
@ | ! , | ,\
(ZIUYI) @2 Qs> Cras @G > (2 ® Q1> 07 @ Qs —*> H' (X, Q1)
The homomorphism ¢ doubles the gradation and all remaining homo-

morphisms of the diagram are compatible with the gradation.
THEOREM. Let X be a non-singular projective torus embedding, 8 the
corresponding conical complex in R™ and Z[U]/I the graded ring (*) attached
to 8. Then the diagram (D) induces isomorphisms
Z[U)I = Cre(X) 5 ORgl(X),
Z[U)I®;Q: = H* (X, Q).
For each q the Z-module C%,(X) is free. For i odd we have H' (X, Q;) = 0.

Proof. Using Theorem 2 of [3] we shall show that S has a filtration.
Let us choose an element

aeZ"— Yo
oeS
dimao<n

and consider the action of @,, on X given by the homomorphism 4,: @, — T'.
Fixed points z,, 24, ..., 2,, With respect to this action are the same as
fixed points by T, so they correspond to n-dimensional faces w,, wg, ..., Wy
belonging to S. Consider the unstable decomposition of X (see [1] and [2]),

X = U W (),

where W*(x,) are affine spaces ().
It corresponds to the cellular decomposition of 8 (see the Remark)

of the form
S = L‘) O, o,

for some faces o; of w; (see [6] for details). By Theorem 2 of [3] the first
decomposition is filtrable, then so is the second one.

(!) The sets WY(z;) coincide with the cells defined by Ehlers in [4].
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Let us fix a filtration (#) of X (and the corresponding filtration (F)
of 8). We begin with proving that the homomorphism 4 of the diagram (D)
is surjective. By Proposition 7 of [5] (p. 4-31), applied to the filtration (F'),

the Z-module C},;(X) is spanned by classes of cycles fo,,‘ w8 =125 .0

..., m. Those cycles are nothing else but (") .D,. Moreover, the divisors D;
Jiaj=<Log
intersect transversally. Indeed, by non-singularity of X, those divisors

are locally of the form

D; =5 B XxE X ... X0;X ... XK.
Then
(X, )= [] aD; = [] mw) = nip.,),

O, 07
e 1950y fia5<0

and hence O, (X) is generated by h(p,),¢ =1,2,...,m.

Since X has a cellular decomposition, by [8] the homomorphism e
of (D) is an isomorphism. Hence all horizontal arrows in (D) are surjective.
It follows from Proposition 1, applied to the considered filtration of 8,
that the Q;-space (Z[U]/I) ®,¢, is spanned by p, ®1, p,, @1, ..., p,, O1,
and m is the number of cells of a decomposition of 8. On the other hand,
dimH*(X, Q,) is equal to the number of cells of a decomposition of X
(it follows, e.g., from [2]), and hence equal to m. It is also equal to the
Euler-Poincaré characteristic of X, since the cohomology in odd dimensions
is null. It follows that the composed epimorphism of linear spaces

(Z[U)I)®Q ~H* (X, Q)

is bijective. Since the elements Po,®1 form a basis of (Z[U]/I)® Q,,
P., are independent, and hence they form a basis of the Z-module Z[ Ul
Thus f’, g’, b’ are bijective, ¢ is injective, and hence f, g, b are bijective

3. Non-projective case. Let now § be such a conical complex that X
is non-singular and complete, not necessarily projective. If 8 has any
filtration, then the assertion of the Theorem remains true for X. Unfortu-
nately, the decompositions of X, resulting from the G, -actions described
above, need not to be filtrable (see the Example in [6]; besides, there
exists a filtrable decomposition for this example). We are not able to
prove that every ‘‘non-singular complete” complex S has a filtration
(P 1183). Nevertheless, we have a provisional

ProPOSITION 2. If dim8 < 3, then S has a filtration

The proof is immediate for dimensions 1 and 2. Instead of a 3-dimen-
sional conical complex in R® we consider the corresponding 2-dimensional
spherical complex E, in other words — a triangulation of the 2-dimensional
spherc. One should show that there exists a closed filtration

E-E,>E,,>..o2E =0
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such that, for ¢ =0,1,...,m—1, E, , —E, has one of the following
four forms (see Fig. 2):
(I) {(D} = Go,o)
(I1) {w, o} = Co,o’
(1) {w, o, 7, a} = Ca,an
(Iv) {w,e,0,7,a, B, v} =Co0
(0 is the origin, hence it has no image in the figure).
Y

a = 8
Fig. 2
Moreover, B,,—FE,_, has to be of the form (I), E, —E, — of the
form (IV), and the remaining 8, ,—8; —of the form (II) or (III).
We choose an arbitrary simplex o € Q of dimension 2 and set
Eﬂl—l = E _{w}.

E,,_, may be regarded as a triangulation of a plane set, homeomorphic
to the closed disc D of dimension 2. It remains to find a filtration for
E, _,. Such a filtration can easily be constructed by induction, with the
help of the following

LEMMA 3. Given a curvilimear triangulation Q of D, containing m => 2
simplices of dimension 2, there exist at least 2 olosed subocomplexes Q' and Q"'
of Q such that Q —Q’ and Q —Q'’ are of the form (II) or (ILI) and both topo-
logical spaces |Q’'| and |Q'’| are homeomorphic to D.

Proof follows by induction on m. The assertion is obvious for m = 2.
Suppose that it is true for all m less than some % and consider a triangulation

(i) (ii) (iit)

Fig. 3

of D containing k triangles. Let w € @ be such a triangle that at least one edge
of w is contained in the boundary of D. There are three possibilities (Fig. 3).
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It suffices to consider the case of triangulation @ containing a triangle o
in position (iii). Removing the closed triangle o from D, we have a decom-
position into connected components:

.D et ]Z’I = UIU Ug.

Let U, denote the closure of U; in D, and P; the restriction of the
triangulation @ to U, for ¢ = 1, 2. The triangulation P, either contains
only one triangle or satisfies the assumption of the lemma with m < k.
In both cases there exists at least one closed subcomplex P; in P, such that

P,—P; is of the form (II) or (III);

|P;] is homeomorphic to D;

no edge of w belongs to P; —P;.

In order the last condition to be satisfied we have to prove the existence
of two subcomplexes in Q.

Indeed, the subcomplexes

Q =@—(P,—P) and Q" =Q—(P,—P,)
of Q satisfy the assertion of the lemma. Thus Proposition 2 is proved.

CoROLLARY. The Theorem of Section 2 holds if the assumption of
projectivity of X i3 replaced by: “X is complete of dimension less than
or equal to 3.

4. Ehlers’ formula for Betti numbers of Xg.

PROPOSITION 3. Let 8 be such that X = X4 18 a non-singular complete
variety, and let | be an integer prime to char(k). Let b; = AimH'(X, Q,).
Then b; = 0 for i even.

Let Px be the Poincaré polynomial of X such that

Px(U) = )bl
let d; be the number of faces of codimension i in 8, and Dg the polynomial
Dg(U) = ‘Za,u*'.
Then Px(U) = Dg(U —1), and

by = ) —1)5-‘(2) d,.

i=1

This formula was obtained by Ehlers in [4]. We shall show how it
follows from the cellular decomposition of X.
Let us consider a cellular decomposition

8 =\JC,,



and the corresponding decomposition
X =UWw,
i

(indeed, they exist; for example, this can be the unstable decomposition
described in the proof of the Theorem in Section 2). By [2], we have

by = #{j: dimW, = i}.

Since the subscheme W, corresponds to C,,)..,,j and dimW; = codimoy,,
Betti numbers of X can be expressed by

by = #{j: codimg, = 4}.

Hence both polynomials Dg and Py are given in terms of the complex S.

Now we present one of the ways of deriving the relation between
the both polynomials, which gives the interpretation of Dg.

Consider the complex vector space N ®,C (where N is the group of
one-parameter subgroups of the torus 7T') and its standard immersion
into complex projective n-dimensional space P. The Chow ring of P is
Z[U]}/U™*!, the coset u of U being the class of a hyperplane. Let us
denote by Ol(1), where A is a subset of P, the class of the cycle 1 (Zariski’s
closure) in the Chow ring of P. If 8’ is a subset of the complex 8, we write

Cl(8) = D Ol(w).
eS8’

With this notation we can describe the polynomial Dg as
Dg(u) = CI(8).

This equality determines Dg(u) uniquely, since degDg = n.

We now find the above-mentioned class using the decomposition
of 8. Let us begin with a single cell C, , = 8 and let r be the codimension
of 0. The cone o has n faces of dimension n —1. Let V,, V,, ..., ¥V, be the
linear hulls of those faces in N, and H, the open half-space spanned by V;
and o for ¢ =1,2,...,n. Then

® = h(ViUHt)'

t=1
Since ¢ is a face of w, we can assume that

r
g = (n V‘)ﬁ .
f=1 -
The (not necessarily compact) polyhedron |C, ,| the faces of which
are precisely the elements of C, , is of the form

r n

10,0l = N (V;VH)N (N H,.

f=1 Tmp4l
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Since Cl(V,) = » and Cl(H,) = 1, it follows easily from the trans-
versality of V,’s that

Cl(C.0) = [ [(CUV)+Cl(HY) [] CLB)= (u+1).

i=1 f=r4+1

For the whole complex S we have

OL(B) = DICI(C,,0) = Y (w+1)™42% = 3'by(u+1)' = Px(u+1),
j j

i=1

and the formula is proved.

Added in proof. When the paper was in print, Danilov [9] proved
by other methods that the Theorem holds for an arbitrary non-singular
complete torus embedding.
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