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ON THE FUNCTIONS ¢(n) AND a(n)

BY

A. MAKOWSKI axp A. SCHINZEL (WARSAW)

In this paper ¢(n) and o(n) denote the Euler’s function and the sum
of the divisors of n, respectively, p denotes odd primes, p; the ¢-th prime.
It has been asked in [5] whether the inequality

k times
lim inf g...0(n)
n
holds for every k and it has been remarked that for k¥ = 2 the affirmative
answer follows from a certain deep theorem of Rényi [4]. The aim of
this paper is to give an elementary proof of the equality

oo(n)

lim inf =1

n

and to evaluate other similar limits.
THEOREM. The following formulae hold:

(1) lim inf "“i”) —7,
(2) lim sup (paqiﬂ) = 00,
3) tim sup 227 — 3,
(4) tim ing 0 <ing P < gy on

The proof is based on two lemmata. The first is a generalization
of a result of Bojani¢ [2] and is elementary, the second is related to a theo-
rem of Rényi and is used only to show (3) and (4).
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LeMMA 1. If a is an integer >1 and N(a,p) = (" —1)/a—1, then

o) . o(Nia,p)
p—oo N (a,p) - N(a,p)
Proof. Put N(a,p) =N = qi'¢32... ¢;5, where ¢; (1 <1 < s) are
different primes, a; > 1. Clearly

8

(5) ]7(1—%)_l . "gl,>1> o (N) r[(l__)

1=1

For p > a-+1, we have ptra—1, thus ¢; = 1 (modp) (cf. [3], p. 381)
and ¢; >p (¢ =1,2,...,s). It follows that

N >p°1+...+ﬂg >p3

and
a”—1
log( )
) logN a—1 _ loga”  ploga
= logp logp logp  logp
Hence
: 1 1 1 \ploga
(6) n(l——) 2(1———)8>(1——)p1°”—>1.
- qi P p

The lemma follows from (5) and (6).
LEMMA 2. The following formula holds:

olie=1) _ . o(ip—1) _
ip-n e b

limsup —

Proof. Clearly

e(3(p—1)) &1 0(%(19—1))'
dp—1) ~ 7 T i(p-1)

On the other hand, it has been proved by Wang ([6], Appendix,
formulae (7) and (8)) that

(7)

Cq Cq®
P a5y > 12,9y — 1= ( )
(w7 Q? ) - n (q)log T 10g3$
Here, P,(xz, q, £) is the number of primes p satisfying p < z,p = a
(modg), p # a; (modp;) (i =1,...,7), where w = <{a,q,a; (1 <1 r))
is a sequence of integers such that g<z, (a,q9) =1, a; 0 (modp;)
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and p; are all primes < & not dividing 2¢; ¢, is a certain positive con-
stant (cf. [6], formula (6)), n = §/(6—1), where as stated on p. 1054

r times
one can take 6 = 1,5. It follows after the substitution v = <¢3,4,1,...,1)
that there exist infinitely many primes p such that every prime factor
of (p—1)/2 is greater than p'*°. Let ¢ be any number > 0 and take p of

the above kind greater than 20°¢ *. Let
1p—1) = q'¢2? ... &

where ¢; (1 < < s) are different primes and «; > 1. Clearly s < 20,
and

8

’l(l 1)>(1 1 )20>1 i >1
e T —— —e.
T puzo p1/20

1=1

On the other hand,

8

1\-'_ o(}(p—1) _ oltp—1) _ - 1
-4 > % > Gy 21](1‘5)'

1=1

It follows that

olkr—1) _ plie—1)
Hp—1) = 3(p—1)

In view of (7), this completes the proof.

(X —e) > > 1—eg.

Proof of the Theorem. We begin with formula (1). For any ¢ > 0
we take a prime r >1-+4¢"' and put @ = r in Lemma 1. We have N (r, p)
= ¢(r*"'). Hence

o) oa(®Y) o(®))
e B

. o(N(r,p) .. o™
- h ‘_'—“"—"‘"h ==
p_,I?o N(r,p) p_,r?e il r—1

< 1-+e.

Since go(n)/n > 1 for all n, formula (1) is proved.
Proof of formula (2) is similar. For any M we take a number ¢ such

that
¢
Pi

M
Pi—1 -

i=1
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and put successively a = p,, ps, ..., p; in Lemma 1. We have

t t
G(ﬂpf“‘) =Q N(pi, p).

Hence
t
limsup —5—— = limsup =L > lim sup ” #
P—>00 I__{ p%g_]'_ L—>00 I_—Il pf{)_l P—>00

_” pz,p) nh pul :p?
D—00 pu P—oc ’L

This completes the proof of (2).

Formula (3) follows at once from Lemma 2, since

1 —1)) p—1
timsup 7P _ timsup Z2 Y < Jimgup LE@ D) 2

P—oo P P—>00 y4 D % (p —1) 213

!

and, on the other hand, ¢¢(n)/n < 4 for all » >1.
In order to prove formula (4) assume that m is any positive integer
divisible by 4. By Lemma 2

iming PAMD) _ L a2p(dm)o(d(p—1)
P—>00 %’mp P—00 ‘%mp
_ %M ning CR@—1)  op(m)
m —_— ip m
Since
099(234—4) B 2% __1 B 1 1
93 _y T oM _y4 —E+ 234_4’7

the proof of the theorem is complete.
The following equalities supplement the theorem:

(8) lim sup o o,
n
9) tim int 22" _ o,

n
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(10) lim inf Ww(”) = 0,
(11) lim sup @éﬂ -

Equalities (8) and (10) are trivial, equalities (9) and (11) have been
proved by Alaoglu and Erdés [1]. In that paper the following conjecture
has been announced: for sufficiently large n the sequence

a(n), oo(n), paa(n), opoa(n), ...

tends to infinity. We remark that this conjecture implies the finiteness
of the set of Mersenne primes. Indeed, if 2”—1 is a prime, then

g0 (2P7Y) = ga (2P —1) = @(2°) = 2771,

and the sequence in question is periodical.

It seems a natural question to ask whether formula (4) can be im-
proved. Mrs. K. Kuhn has investigated the quotient og(n)/n for » having
at most 6 prime factors and has found that op(n)/n =4 for such =’s,

the equality being realized only if m = 2**'—2 (0 <4 < 5). This sug-
gests a problem

P 486. Is the inequality op(n)/n > } true for all n?

Remark. Even the weaker inequality infog(n)/n > 0 remains still
unproved.
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