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1. In [3] the following theorem was proved:

If F,(z,y) and F,(x,y) are forms over an algebraic number field K,
which are without non-trivial common factor and are both of degree
at least three, then the transformation 7' of the set K* defined by T
(@, y) — (Fl(w, y), Fy(x, y)) has no infinite invariant sets, and the same
holds if both forms are of degree two.

In this note™ we consider the case when the forms in question happen
to have a common factor, and prove the following

THEOREM. Let K be an imaginary quadratic extension of the rationals.
Let Fi(x,y) and Fy(z,y) be forms over K with a common factor F(x,y).
Denote by m; (i = 0,1,2) the degree of the form F;(x,y). If 2n,+3
< min(n,, n,), then the transformation T of K* defined by T: (z,y)
— (Fy(z, y), Fy(x,y)) has no infinite invariant sets.

2. LEMmMA 1. Suppose T is a transformation of a set Y onto itself and
suppose that there exisis a distinguished element a in Y such that T(a) = a
and, moreover, that there exists a function f(y) defined in Y with values
in the set of natural numbers, satisfying the following conditions:

(i) the equation f(y) = ¢ has for every natural ¢ at most a finite number
of solutions,

(ii) there exists a constant C such that from f(y) = C, T(y) #a it

follows f(T(y)) > f(y).
Then the set Y is finite.

Proof. Put X = Y\{a}, X, = {#eX : T(x) # a}. Then evidently
T(X, = X and the conditions of lemma 1 in [2] are satisfied, hence X
is finite and so must be Y, q. e. d.

*During the preparation of this paper the author held a British Council
Scholarship at the University College, London.
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Every element & of K* can be uniquely represented in the form

b

'+ 80 pP+ oo
F=1 )
V41 Qs
where 1, o = (d+ I/E) /2 is an integral basis for K (d is the discriminant
of K), piV,...,p% are rational integers, ¢,,¢, are natural numbers

and (p{?, p¥, ¢;) =1 for i = 1, 2. For every such & put
f(&) = max{{p], ..., [P], 41, 4o}

and, moreover, for integral rational a,b put
¢(a+bw) = max(lal, |b]).

Let us remark that for z non-zero, integral in K we have |[z]
> @(x) > |x (Where la| < b means a = O(b)) and consequently for non-
-zero, integral z,y we have g(xy) > ¢(x) ¢(y).

LEMMA 2. There exists a constant C such that from f(&) = C and
T(&) # (0, 0) the inequality f(T(&)) > f(&) follows.

Proof. Suppose that for a sequence {&,} we have

(i) f(&) — oo,

(i) f(T'(&) <f(&)s

(iii) T'(&) # (0, 0).

Let Fy(x,y) = Fo(x,y)Fi(z,y) and Fy(z,y) = Fo(z, y) Fs(2, ),
where F,(x,y) and F,(x,y) are without any non-trivial common factor.
We can assume that F,(z,y) and F,(x,y) have integral coefficients.
Moreover, let A be the least positive rational integer such that F,(z,v)
= AF,(z,y) has integral coefficients.

Let (¢q1,4.) =0 and Q; = ¢;/o (# =1,2). (Here and in the sequel
the indices % are omitted for the sake of simplicity.)

Now

T(¢) =

FyFy FiF3 >
A(Q,1Q:0)" 7 A(Q,Q:0)™

where F; = Fyi(Q,(p"+p o), @, (pP+pPw)), i =0,1,2. Let us de”
note by p; the greatest natura,l divisor of 4(Q,0Q,0)" which divides F; F;
(¢ =1,2). Obviously
A "o " @(FyFY Fy Fy
1) f(Te) :max{ (@192 0) , (@:,Q:0) ,tp( 0 __1_)_,?7( 0 2)}
231 M M1 M2

Consider at first the %&’s for which F; = 0 for some ¢ and choose
from them a subsequence with ¢ = 1. (The remaining subsequence with
¢ = 2 can be dealt with in exactly the same way. If any (or both) of the
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subsequences is finite, there is no need to consider it at all). In this
case the ratio ’
Q1 Qz

can assume only a finite number of different values, say 4,,..., ;. (One
of the A’s can be infinite if it happens that p{? = p{ = 0).

(a) F*=0,p® =pP =0. In this case obviously ¢, =0 =1
and FXF* = ¢, (p"+ p w)"2 with some integral C,. By lemma 3 of [1]
we have

g (Fe Fy) > max(|p{"]"2, [pi"2).

(This follows easily from ¢(z) > |@| > ¢(x), but we prefer to quote [1]
as the result there holds for every algebraic number field and we want
to use the assumption that K is an imaginary quadratic field in those
places only, where we are not able to avoid it).

Now consider u, and remark that it must divide 4Q7? and C, (pl!
+pPw)"2, hence by the lemma 2 of [1] we get p, < 1.

It follows that

(P agi)
Mo ’ M2
> max{Q2, [p{"|"2, [pt’|"2} = f"2(£),
thus f(T(&)) > f(&) if f(&) is sufficiently great.

(b)y Fi=0, [p‘2)1+|p(2’| + 0. In this case we can assume that

(T (&) = max{

@) Wtptlo . pPtpe
Q, Qs
holds with a fixed A.
Then
FyFy = Fo(2, 1) Fy(2, 1O (p -+ 00)"™
and, as

P(Q12 (P + pf 0)"2) > max (|Q,pP]", 10,95
and F,(1,1)F,(2, 1) is fixed and non-zero, it results
(3) p(FyF3) > Qrrmax (|pP)"2, [pP™).

Consider now p,. It divides 4(Q,Q.0)"? and FjF;. The number
Fo(2,1)F,(1,1) need not to be integral in K but in any case u, divides
C,(p"Q, + p”’Qlw)"2 with some €, which is integral in K. Let us de-
note by » the greatest natural divisor of 4(Q,Q,¢)"* dividing
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Cz(p(f)—}—p(f)w)an?z. Evidently Q72 divides ». Let » = »/Q72. It must
be of the form »" = AB, where A divides 4 and B divides ¢;2. As no
integral rational divisor (;é +1) of B divides p‘”—{— pP w, the application
of the lemma 2 of [1] leads us to B < 1, and »" < 1 follows immediately.
We have thus

(4) v = C,Q

with bounded (.
Let us now return to (2). If

1 =2 fag-gal,
Y

then
P +p0  ntro
Q, ?’Qz

with some rational integral r,,r, and so @, divides y@,. But y is fixed
and (@,, ¢.) = 1, hence it follows @, < 1. From (4) we infer now » < 1 and
a fortiori u, < 1.

From (1) and (3) it follows that

(5) f(T() > max{g?, p(F; F;)} > max {g;2, [p{|"2, [p{"]"2}.

If f(&) = qs, [P or |pP|, then we get the desired result in the
same way as in the previous case. The same method applies moreover
if f(£) is o(g52) or o(|pP|" with some i =1, 2. Hence we can assume
that

(6) PP < Ipfl = £(&),  1pPI" < [pf)] = f(&).
But Q,(p{"+ 2 w) = 49, (P + pP w) and by taking norms of both
sides we get

(7) QN (PP +p0) = NN (pP+pf w).

As N(z+yow) > max{|2|*, |y|’} the left-hand side of (7) is > |p{)*,
but the right-hand side is < ma.x(|p(2’] ) < |py)| by (6). Thus we have

got a contradiction.
It remains to consider the case of the k’s for which FiF; =+ 0.
At first we consider the %’s for which f(&) = max(q,,q,). Let
max (@, @) = @*, min(Q,, @) = Qx, max(n,, n,) = M, min(n,, n,) = N.
From (1) and f(T(&)) < f(&) we get

(8) pe> Qe (1 =1,2),
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As F,(x,y) and F,(r,y) have no non-trivial factor in common,
it follows in the same way as in [3] that the largest natural divisor of
(41, ps) dividing F¥ and Fj must be bounded, whence (u,,pu,) < |Fgl.
Moreover, [u;, us] < (@:@:0)" and so

papts = [piay 2] (try 112) < (0@:1Q0)" | F5l < 0™ F™0Q) (@)™,
as Fr < o"(Q*)™0. But (8) implies

Uy > QM+N pepst (Q*)M+N_1

and so we must have
VTN (@MY < 1.

Now by assumption N > 2n,+3 we have f(£) =pQ* <1, a con-
tradiction with (i).

Finally consider the case of the k’s for which f(£) = max(|p{)).
Choose from them a subsequence with f(&) = |p{”|. (The remaining
subsequences, if infinite, can be dealt with in the same way).

From (1) and f(T(£)) < f(&) relations

(09,Q.)" H_>¢(F3F;")
P 1p?

follow and, similarly as above, we get

(9) pi > (t=1,2)

py g < |F:;|(QQ1Q2)M
From (9) we infer that

(9@1@2)711?’(F: F;)
Hylhy > @2 '
Va'ud
and
(QQle)nz‘P(F:FT)
Bipes > @)2 ‘
|y’
Consequently
1pP)*|F5| > (09192 Yo (Fy Fy)
and

lp(2)l IF:I > (QQIQz)nrM‘P(F:FT)-
By applying p(zy) > ¢(7)-g(y) We obtain
P21 > (0@:Q:)" Mo(Fs), 1PV > (00,Q2)" Mo (FF)
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and from ¢(x) > |z| it follows that

PP > (009" Y (Fs, P> (00:Q.)" M| FY.
But

- . — Q2(P(11)+p(21)w)
¥ " (@ 1 (3 0\ T
F‘L - Q]t(p]_ +p2 (’O) FT«( Ql(p(12)+pg2)a)) 7 1

hence

Gl
PP+ pP )’

p (GO )
JUATGEST L

|p(12)l2 > Qn,l_ﬂdQ;zlﬁunaﬁ M n.l_J/I IP”H‘P(Z) (!)|”2 IF (

|p(12)|2 > QN-.‘,.*AI ,’)1&14%2—1"@”2_—31 |p(2)+p(2)()|ia

and so it follows that
o (GO0 V| o) Y1
Q0P pP0)” N 1 Qe S T T

which contradicts |F,|+ |F, > 6 > 0. The lemma is thus proved in all
cases, and the theorem follows immediately.

i_
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