COLLOQUIUM MATHEMATICUM

VOL. LV 1988 FASC. 2

GROWTH OF THE NORMS OF PRODUCTS
OF RANDOMLY DILATED FUNCTIONS FROM A(T)

BY

HANNA GARYGA anD ANDRZEJ HULANICKI (WROCLAW)

1. Let A(T) be the Banach algebra of functions with absolutely con-
vergent Fourier series

J@ =Y ®e*  Nflla= ) |f (k).

For a non-zero integer s we write

Si(x) =f(sx).
Of course,

WAlla =11/ Nl

Also, if A = suppf, then suppf, = s4 = {sa: se A}. Moreover,

supp(fi,fi,) = suppfe, #fi, €5, A+5, 4.

Consequently, if sy, ..., s, are such that every element a in s, A+ ... +5,4
has only one presentation in the form

a=sa;+ ... +s,a,, aeEA,
then
WSy ---Ss)la = S11%-

From this one can deduce that if for a given function fin A(T) a sequence
51, S3, ... Of integers is lacunary enough, then

R |
(1) lim ;logllf.l oo Silla = logll flla
On the other hand, if we take a constant sequence s, = 1, then
|
@ lim ~1og 11l = Iog L1l -

n—a0
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More general easy inequalities of this type are

log|f(0)] < liminf ~ logllfs, - S lla

n—w

1
< limsup-—logll £, ... f,lla < loglf]la.
In Section 2 of the present paper we show that, in fact, for every f in
A(T) there is a sequence s,, s, ... of integers such that

llm ln'f log"f;l . ,I;""A log"fllLd)Q

n—*a

1
limsup- logIIL,- S )l = 10g || flla-

n— o

)

The aim of this paper is to show that sequences for which (1) or (3) hold
are, in fact, quite rare. This is made precise by the following

THEOREM. Let S be the set of all integer-valued sequences, S Zx2Zx.
There is a subset Sy of S such that

(i) if u is a probability measure on Z and u=puxpx ... is the direct
product measure on S, then u(Sp) =1:

(i) for every f in A(T),

1
hm sup log”j;l . j;""A log”f”l‘cb

n— o

for every sequence s,, s;,... in S,.
The proof of the Theorem is based on the following

LEMMA. Let A be a finite subset of Z with |A| 2 1, p a probability measure
on Z and ¢ > 1. We write

B. = {s€S: s has a subsequence s, st.|s; A+ ... +s, A > c™
and
B=|) B. = U B, + yn-

c>1
Then u(B) =0.
CoROLLARY. There is a subset S, of S such that for every non-empty finite
subset A of Z

1
limsup-';loglsl A+ ... +5,4 =0
for all s=(s,, s,, ) in Sy, and u(S,) =1 for every probability measure p
on Z.
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Proof of the Lemma. For a given number r (0 <r < 1) and a finite
set Tin Z we define a subset of S as follows:

M,(r, T) = |seS: at most nr among s,, ..., s, are not in T).

For s in M, (r, T) we prove

“4) Is; A+ ... +5, 4] < (n+ 1)!4IITH 44,
In fact, for an element a in the set of the left-hand side of (4) we write
%) a=) sia=) sia+) 5a.
i<n i<n i<n
s;eT s;¢T

The number of integers which can be presented as the first summand in
(5) is at most (n+ 1)'4'T!_ On the other hand, the number of summands in the
second summand in (4) is at most nr; therefore, for a fixed s at most |A|”
numbers can be presented in this form. This proves (4).

Now we take an arbitrary ¢ > 1 and we choose r in such a way that
|A]" < c'/2. Then for all T and n we have

(6) Isy A+ ... +5, A] < (n+ 1)14lITI cn/2

for every s in M,(r, T). ,
Further, r being fixed, we select a subset T of Z so large that

H(Z\TY <3$14]7'.
Then for every n we have
(7 #(S\M,(r, T)) <|4|™".
In fact,

#(S\ M, (r, T)) = the probability of selecting more than rn
elements from Z\T in n independent trials

=3 (:) u(TY™* u(Z\ T

rm<k<n

<[Ruwz\1T)7".
Let

M, = ( M., T).

If seM,, for a fixed m, then for every n > m inequality (6) holds and,
consequently, '

B, < $\M,, = U [S\M,(r, ]
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Hence, by (7).
[ o}
uB)< Y |AI°"

for all m, and so the proof of the Lemma is completed.
Proof of the Theorem. Suppose first that ¢ € A(T) is a trigonometric
polynomial, i.e. suppp = A is finite. Then for an arbitrary s in S we have

s, - @5 )la = "(ﬁsl * ... *‘ﬁs,,”,n
<@y, * ... %@ ll2l sy A+ ... +s5, A|Y?
=gy, .- @5l 2151 A+ ... +s, A|'?
<@g, - P )l olss A+ ... +5,A41"%.

To prove the Theorem we may assume ||f|| o = 1. Then we take an
arbitrary ¢ > 1 and let

1
S. = {seS limsup— logllf,l. .f,n||‘<logc}.

n—ao

It suffices to prove that u(S, = 1. By the Corollary, this is implied by S,
> Sy, which we now prove.

Let ¢ >0 be such that 1+2¢ <c'? and we take a trigonometric
polynomial ¥ such that f =y +g with |ig||, <é&. Then, of course,

Wil o <1+e.
Let s€S,. If A =suppy, then for n sufficiently large
lsiy A+ ... +s, A|<[s; A+ ... +s,4] <"

for all 1 <i; < ... <i,<n. Hence, if

. . . . h
:'l"""k:: lstl <... <lt<n}={i",: ISI'S ( )}9

—

k
then

ey - Sola= ||(¢+g),, o W) L
<3 Z II I] Yulall 1T 0.l

k=0r=1
J#g

) Z W o lsi, A+ .. +5;, AV """
k=0r=

SC"’Z Z (n ( -I-s)k&‘"-k <c",
k=0 k

which completes the proof of the Theorem.



RANDOMLY DILATED FUNCTIONS FROM A(T) 321

2. Remarks.

Remark 1. For every function f in A(T) there is a sequence s,, s,, ... of
integers such that (3) holds.

Proof. Of course, we may assume that ||f}| , = 1. First we note that if
g, he A(T), then

® lim |lghdll.a = ligll allhll 4

s$—a

(cf. [2]. p. 82).
Using (2) and (8) we define sequences s,,s,,... and k,, k,, ... by
induction as follows:

sl—_-k‘:l.

Suppose ky, ki, ..., kom-1 and sy, s;, ..., S, _, are defined. We let

g=fufy I,

we take n so large that

1 1
- " g )
~log(lgllallf L0 < -

and we let

k;,,,=k2,,,-1+n and sk2m—l+l= ces =Sk2m_‘+,,=l.
We then have
©) k3 logllf, - iy, Il < 1/m.

Now, suppose k,, ..., ko, and sy, s,, ..., 5, are defined. We write

) _
g7 =1, "'f’kzm
and ewe put k,,.; = ko +n, where n is so large that

log [(1 — 1/m)ll g IL4Il A1’ = log Il f1la(1 —1/m).

kyw+n
Now we proceed by induction for j < n letting, by (8), s, +; be such that if

D — 40-1
g - g j;"Zm"’J’
then

llgDlla = 1199~ Vllall £l a(1 = 1/m)*/".
Hence
g™le = llg N all f1I% (1 — 1/m)
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and, consequently,

(10) Kidv11081fey Sy, lla>> logllflla(1=1/m).

Thus, by (9) and (10), the proof is completed.

Remark 2. The estimate given by the Theorem is sharp. In fact, it is
known (it follows from [2], pp. 81-82) that for every sequence of positive
numbers ¢, which tends to zero there is a function f in A(T) such that

1
~log|1f"lla = log|lfll .+ &n-

However, we do not know whether for ¢, 0O there are a trigonometric
polynomial ¢ and a probability measure u on Z such that

1
;logllrp,l oo @ lla 2= loglolla+ &,
for pg-almost all sequences s,, sy, ... (P 1349). We note that for trigonometric
polynomials with |l¢||, . =1 we have (cf. [1])
lels<C forn=1,2,...

The authors are grateful to O. Carruth McGehee for interesting discus-
sions and information related to the contents of this paper.
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