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IN METRIC SPACES
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The problem of cxtensions of R'-valued Lipschitz functions was
investigated, e.g., by McShane [6], Banach [2], Mickle [7], Valetine
[10]-[12]. Cipszer and Geher [4] and Aronszajn and Panitchpakdi [1]
considered the extensions of Lipschitz maps with the values in hypercon-
vex metric spaces. In this note we study the extensions of Lipschitz maps
between metric spaces.

In Section 1 we give some examples of L*-spaces (in the sense of [8]).
It is shown that there exist L'-spaces which are not topologically complete.
Section 2 is devoted to a proof of a gluing theorem for L-spaces corre-
sponding to Borsuk’s theorem on the union of two ANR (9M)-spaces.

1. L*-spaces. We recall first the following definition [8]:

1.1. Definition. Let 4 € [1, o). A metric space Y is called an L*-space
if, whenever X is a metric space and A is a closed subset of X, every
Lipschitz map f: 4 — Y can be extended to a Lipschitz map f: X > ¥
such that || fll < 1||fll. Here || - || denotes the Lipschitz norm, i.e.

lgll = inf{K: dp(g(), g(y)) < Kdx(z,y) forall z,y e X|

for any Lipschitz map ¢: (X, dx) > (Y, dy).
We say that Y is an L-space if it is an L*-space for some 4 > 1.
Given any set D, let (D) denote the Banach space of all bounded
real functions on D with the supremum norm. It is well known that I* (D)
is an L'-space (see [1] and [4]). In this section we give some examples of
I*-spaces. We prove first the following

1.2. LEMMA. A metric space Y is an L*-space if and only if for every
melric space Z containing Y isometrically as a closed subset there exisis
a Lipschitz retraction from Z onto Y of the norm less than or equal to A.

Proof. Let f: A — Y be a Lipschitz map from a closed subset 4 of
a metric space X into Y. Consider Y as a subset of the space F = I*(Y).
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Since 1°(Y) is an L'-space, there exists a Lipschitz map ¢g: X — F such

that g|4A =f and [jg|l = IIfll.
Equip F = E X R' with the max-norm and write

h(z) = (g(»), e(x, A)) e F  for every v e X.

Finally, put Z = h(X)UY x {0} and identify ¥ with ¥ x {0}. Clearly,
Y is closed in Z. Let r: Z e Y be a Lipschitz retraction of the norm less
than or equal to A. Then f = rh is the required Lipschitz extension of f.

Metric spaces X and Y are called Lipschitz equivalent if there exists
a one-to-one map f from X onto Y such that both f and f~' satisfy the
Lipschitz condition. It is clear that

1.3. PrOPOSITION. If X and Y are Lipschitz equivalent metric spaces
and X is an L-space, then Y is an L-space.

Let us prove the following

1.4. PROPOSITION. Every closed convex set lying in a Minkowski space
E" is an L-space.

Proof. It is clear that E™ is Lipschitz equivalent to I*(n) and to I*(n),
the latter being an L'-space. Therefore, we infer the result from the fol-
lowing

1.5. LEMMA. If X s a closed convex set lying in a Hilbert space H, then
the nearest-point retraction satisfies the Lipschitz condition with constant 1.

Proof. For every point € H, let p(x) be the nearest point of X. Since
X is convex, p(#) is uniquely defined. Given z,, x, € H with p(z,) # p(=,),
consider points y,, ¥, of the intersection of the line passing through x,

and x, with the hyperplane passing through p(x,) (respectively, p(x,))
and perpendicular to the segment [p(x,), p(®,)]. Since

e =@l = llp (@) —@,ll  for z e[p(@1), p(w2)],

we have <X(p(x.),p(2,), #,) > 90°, and hence y, (similarly, y,) lies be-
tween z; and x,. Thus

lley —@all = |lyy —¥.ll = lIp (1) — D (25)]l

as required.

1.6. PROPOSITION. The open interval (0, 1) is an L'-space.

Proof. Let X be a metric space containing (0, 1) isometrically as
a closed subset. For every n = 0,1, ... put

A, ={zeX: o[z, (0, 1)) =21},
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We shall construct inductively a sequence of maps {f,} from A,
into I, = [27""',1—2"""!] with the following properties:

(2,) fo = faz1l4, for every n =0,1, ...,

(b,) 1z2—f.(2)] < o(#2, ) for every point e A, and z€ (0, 1),

(e,) fn(@) —Fu (@) < e(#, y) for every z,y e 4,.

Let fo(x) = 27! for every « € A, and assume that f,: A, — I, satis-
fying (a,), (b,), and (c,) has been constructed for some n > 0.

Consider the set # of all pairs (B, fz) with A, <« B< A ,, and
fg: B — 1, ., satisfying the following conditions:

(d,) feldn = fa,

(e,) 12—fg(x)] < o(2,x) for every x e B and z€(0, 1),

(£,) fa(@) —fa(¥)| < ¢(, y) for every &,y e B.

Under the natural partial ordering, by the Kuratowski-Zorn lemma

there is a maximal element (B, f5) of #. Let us show that B = A, $1°
Suppose not and take z,e 4,,,\B. Put

m = max {sup {f5(z) — o(e, %o): @ € B}, sup{z—e(z, 20): 7 € (0, 1)}},
M = min{inf {f5(2) + e(®, 20): @ € B}, inf{z+ (2, 7o) 2 € (0, 1)}}.

It is clear that m < M. Since z,€ 4,,,, we have m <1—2"""% and
M > 27""%, Therefore, there exists a point y,e I, ,N[m, M]. Let us
define f: Bu{z,} — I,,, by

f(@) =

It is easy to check that (BY {&,}, f) € B, contrary to the maximality
of (B, fg). Thus B = A4,,, and f, ., = fg satisfies (a,,,), (D,;,),and (Cyy,)-
We define a retraction r: X — (0, 1) by

fg(x) if zeB,
yo if & =w°.

r(z) = {w if ze(0, 1),
" \limf,(x) if zeX\(0, 1).

It is easy to see that |r(z) —r(y)| < o(x, ¥) for every z,y € X. Thus
the proposition is proved.

Remark. By a theorem of Luukkainen [5] it follows that (0, 1) is
an L*-space. Proposition 1.6 shows that one can take 4 = 1.

1.7. CoroLLARY. 8§ = {z €l®(D): |lz|| < 1} is an L'-space.
1.8. PropoSITION. If Y is an L*-space, then every metric space Z con-

taining Y isometrically as a dense set is an L*-space.

Proof. Let X be a metric space containing Z isometrically as a dense
set. Let X' = X\(Z\Y). Then Y is a closed subset of X', and so there
exists a Lipschitz retraction r’: X’ - Y of the norm less than or equal
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to A. Extending r’ by identity over Z\Y we get a retraction r: X - Z
of the Lipschitz norm less than or equal to A. Corollary 1.7 and Proposi-
tion 1.8 imply the existence of incomplete L'-spaces.

1.9. Example. In the plane R? consider the set
Y = |(x,y) € B*: max{ja|, lyl} <1}u

V{(#, y) € R*: max{lz|, lyl} =1 and #, y arc rational}.
Then, by Corollary 1.7 and Proposition 1.8, the set Y is an L'-space;

however, Y is not of type @, in R? and, therefore, Y is not complete-
metrizable.

2. The union of two L-sets.

2.1. THEOREM. Let X,, X,, X, be subsets of a metric space (X, o) such
that X = X,VX, and X, = X,nX,;. Suppose that X,, X,, and X, are
L-spaces. Then X 18 an L-space if and only if there exists a constant K > 0
such that the metric d on X defined by

(2.1)
s =2 ez i 1,3

inf{o(x, 2)+ 0(y,2): z€ X,} otherwise
satisfies the condition
(2.2) dz,y) < Ke(®,y) for every v,yeX.

Proof. Assume that the metric d defined by (2.1) satisfies (2.2).
It can easily be seen that X, = X,nX,. Therefore, by Proposition. 1.8,
we may assume that X,, X,, and X, are closed in X. Since the identity.
map idy: (X, 0) > (X, d) is a Lipschitz equivalence by Proposition 1.3,
it suffices to prove that, for every metric space (Z, d) containing (X, d)
isometrically as a closed subset, Z Lipschitz retracts onto X.

By a theorem of Kuratowski and Wojdyslawski [3] we assume with-
out loss of generality that Z is a convex set lying in a normed space. Put

Z,=1{ze€Z: d(zy X)) > d(2, X,)}, Z,={2€Z: d(z, X,)<d(z, X,)},
Zo =Zan2.

Then Z = Z,VZ, and X, is closed in Z,. Since X, is an L-space, there
exists a retraction ry: Z, — X, such that

d("o(w)y ro(y)) < AM(z,y) for x,yeZ,
where 4 < oo. For ¢ = 1, 2 define a map f; from Z,U X, onto X; by

_[re(r) if zeZ,,
f"(z)_lz if ze X,.
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Let us check that f; is a Lipschitz map. Let zeZ, and » € X,. By
the definition of Z, there exists a point ¥ € X, such that d(z, ¥) < 2d(z, =).
Then, necessarily, d(z,y) < 3d(x,z2). By the definition of d there is
a point p € X, such that

d(z, p)+d(p,y) < 2d(z,y).
Then we have

d(fl(w)ifl(z)) = d(a:, "o(z)) < d(z, p) +d(P1 "o(z))
< d(z,p)+Ad(p,2) < d(z, p)+Ad(p, y)+Ad(y, 2)
< AM2d(w, y)+2d(y, 2)) < 84d(x, 2).

Thus f, and, similarly, f, are Lipschitz maps.

_ Since X;e L and X;UZ, i8 closed in Z;, there are Lipschitz maps
f‘: Z‘- —)'Xi Such thart filxiuz‘, =f“ a»nd.

d(fi(2), fi(¥)) < A d(=,y) for z,yeZ,and i =1, 2.

We now define a retraction r: Z — X by setting r(2) = f;(z) for z € X,.
Given x € Z, and y € Z,, by the definition of Z;’s there is a $ € [0, 1]
such that 2 =tz + (L —t)y € Z,. Then

a(r(z), r(y)) < d(r(x),r(2))+d(r), r(@) = d(fi(®), f1(2)) + d(f2(2), f2(y))
< AL d(w, 2) + A,d(2, y) < max {4, A}d(z, ¥).

Therefore, r is the desired Lipschitz retraction of Z onto X.

Conversely, assume that (X, ¢) € L. We will show that there is a con-
stant K > 0 satisfying condition (2.2).

Consider again (X, g) as a closed subset of a convex set lying in a nor-
med space. Let r: Z — X be a Lipschitz retraction such that g(r (), r(¥))
< Ko(z,y) for all z,y e Z. Let x € X, and y € X,. It is easy to see that
there is a 2 € [#, y] such that r(2) € X,. Then we have

d(z,9) < e(®, r(2)) +o(r(2), y) < Ke(z,2) + Ko(z,y) = Ke(z,y).

Thus the theorem is proved.

2.2. COROLLARY. In the notation of Theorem 2.1, if X and X, are
L-spaces, then so are X, and X,.

Proof. Let us note that if (X, o) € L, then it follows from the proof
of Theorem 2.1 that the metric d defined by (2.1) satisfies (2.2), and hence
is Lipschitz equivalent to p.

Now let Z be a metric space containing (X,, ¢) isometrically as a closed
subset. Since X is an L-space, there exists a Lipschitz map f: Z - X

such that f|X, =idg. Let »': X, > X, be a Lipschitz retraction and
define r: Z - X, by

- {10 @,

r'f(e) if f(x) e Z\X,.
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Since ¢ and d are Lipschitz equivalent, an easy computation shows
that r is a Lipschitz map. Thus X, (and similarly X,) is an L-space.

Remark. The proofs of Theorem 2.1 and Corollary 2.2 are similar
to those in [9].
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