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1. A mapping of the closed unit disc K onto itself given by the
formulae
(1) U =u(®,y), v=n0(,y)

will be called a mapping preserving locally the area on the boundary, if
functions (1) belong to the class C! in an open set which includes K and if

(2) Uy (T Y) 0y (@5 Y)—uy (T, Y) vz (2, y) =1

for all points belonging to the boundary K* of K.

A point (xz,, y,) is said to be a conformality point of a mapping (1)
belonging to €', if the derivatives u,, u,, v,, v, do not vanish simultane-
ously in (z,, ¥,) and if they satisfy there the Cauchy-Riemann equations

(34) Uz (2, Y) = vy(@, y),
(32) —Uy(®, Y) = v.(,y).

A mapping (1), not necessarily belonging to the class (1, will be
called a mapping preserving the boundary, if for any point (z,y) of the
circle K* we have

(44) u(@, y) = =,
(42) | o(@,y) =y.

The present paper concerns the problem of existence of conformality
points for mappings transforming the disc K onto itself, preserving the
boundary and locally the area on the boundary. We call them J-map-
pings. The fundamental result of this paper is formulated in Theorem 3.

2. Put
P = {(w, y)e K" : v,(2, y) = uy(®,y) = 0}.
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We shall prove

LeMmA 1. If (1) s a J-mapping, then the only meet points of the
curve (3,) with K* are the points

(51) 1,0), (=1,0), (0,1), (0,—1)

and all points of the set P, while the only meet points of the curve (3,)
with K* not belonging to P are

(52) (274,271, (-2, —2, (27, g7,
(_2—]/2’ 2—1[2).
Proof. If # ## 0, then from (4) we get
Uyly+ Uy = Xy, Vpy+vy =1, xx,+y =0,

for (x,y)eK*, whence

xy = —ylz, uy=—(YL)(1L—u), v,=1+(y/v)0s,
which, in view of (2), yields
(6) Uy =1—(y[®)vs, Uy = —(Y[®)'0z, vy =1+ (y[2)V,
and thus
(7) Vy— Uy = 2(1/"17)?/’0:1” 'vw"}'uy = (l/w)z(m+y)(w—y)'vm

for all (z,y)eK*.
Similarly, if ¥ # 0 and (x, y)eK*, then from (4) we have

Ut UyYe =1, Vot VYo =Yy XT+YYs =0,
whence, in view of (2), we obtain
(8) uy =1+ @Yy, vz = —(@[y) vy, vy =1—(@[y)u,
and, consequently,
(9) vy—ty = —2(1[9)BUy, Vet+uy = — (1Y) (@+y)(@—Y)U,.
Relations (7) and (9) prove Lemma 1.
For any J-mapping and every (z,y)eK* we get from (6) and (8):
1° if z # 0 and y # 0, then v, = 0 is equivalent to u, =0,
2°if v #0 and y = 0, then u, =0,
3°if x =0 and y # 0, then v, = 0.

From Lemma 1 we get also immediately

THEOREM 1. If (1) is a J-mapping, then each point of the set P is
a conformality point of (1).
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In this way the problem has been solved easily when the set P is
not empty. The opposite case, which is essential, will be considered in
the sequel.

3. In this part we shall consider branches of curves (3,) and (3,)
passing through the points (5;) and (5,), respectively (comp. Fig. 1).

“(01)

CRHAIY (2% 277

(0-1)]

Fig. 1

LEMMA 2. If (1) i8 a J-mapping of the class C2 and if the set P is
empty, then each of the points (5,) i8 a regular (*) point of the curve (3,)
and the branch of curve (3,), passing through this point, always enters (2)
the interior of K; similarly, each of the poinis (5,) is a regqular point of the
curve (3,) and the branch of curve (3,), passing through this point, always
enters the interior of K.

Proof. To prove the Lemma it is sufficient to verify that in any
of the points (5,) and (5,) the derivative of the corresponding function,
i. e. of v,—u, or of v,-+u,, in the direction of one of the semitangents
to the circle K* does not vanish. This derivative may be expressed as

(vy— uy), for points (1, 0),(—1,0),

(v, — ), for points (0, 1), (0, —1),
27 (vp+ uy)— 27 V2 (v, +u,), for points (2712 2712, (—2712, _o-1%)
27 (v )+ 272 (v, 4+ u,), for points (273, —271%), (—272 2717,

Consider at first the curve (3,) at the points (5,).

(!) Under a regular point of the curve F(z, y) = 0, where Fe(C!, we understand
here a point at which at least one of the derivatives F; and Fy does not vanish.

() “enters” means here that the tangent to a branch in the corresponding
point of K* is not simultaneously tangent to K*.
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If # # 0, then from (6) we get

Vayy+ Vyy = (1/2)0,— Yy (1 [2)2@y 0, + Y (1/2) Oz 0y + Y (1 [2) Vg,

(10)  Ugally+ Uy = — (1[2)0z+ Y (1/2)2@y Ve — Y (1/2) Vg — Y (12) Vg
umywﬂ+uuﬂ = —2y(1/w)2vm-|—2y2(1/w)3wyvx—yz(l/w)zfummy—
— Y2 (1/2)?vgy.

Hence putting y =0 and taking in account that (in view of
x, = —y/x) vy, = 0, we have

Uyy = (L[2)Vsy Uy = —(1[2)Vzy Uy =0
and, in consequence,
(11) ('Uy_—ua:)y = (2/60)’03 # 0.

Analogously, for ¢ = 0, y 0, in virtue of y, = —2/y and (8) we
easily obtain

Ugr = (1Y) Uy, Ve =0, vz = —(1/y)u,
and, in consequence,
(12) (Vy— Up)y = —(2/3/)%;, # 0.

Consider in turn the curve (3,) at points (5,).

Suppose at first that y = @. Then, in view of x, = —y/x, the system
of equations (10) takes the form

— Vg +Vyy = (2/2)V;— Vg + Vs

— Uyt Uy = —(2/2) 0+ Vg — Vg
— Uyt Uy = — (4/2) Vg4 Vg — Vg
whence
(13) 272 (vt wy)p— 27V (0t )y = 2Y2(2/) v, #£ 0.
Let now y = —«. Then, in view of y, = —x/y, we have similarly
Vgy+ Vyy = (Z/w)”x—”m—‘vxy,
Ugg+ Ugy = — (2[2) Vg + Vgt Vg,
Uy~ Uyy = (4]2)Vp— Vo — Vs
whence
(14) 272 (vpt )+ 27 PP (0t ), = 2Y2(2/w) v, #£ 0.

Thus Lemma 2 is proved.
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4. According to Lemma 2 there are four different points on K*
through which regular branches of the curve (3;) pass and there
are four other different points on K* which are initial points of regular
branches of the curve (3,). There arises the problem of continuability
and course of these branches inside of the disc K. Here we shall confine
ourselves to the investigation of a certain subeclass of the J-mappings.

We distinguish three following subeclasses of mappings of the disc K
onto itself:

(i) mappings of the class 02 in K such that the system of the
equations

(15,) Uz (2, y) = vy(2, y),
(15,) Uz (X5 Y) = Vay(2, ¥),
(153) A ua:y(wy ’!/) = vyy(w7 y)

has no solutions in the interior of K, while the systems of (15,) and (15,)
and of (15,) and (15;) have a finite number of solutions in the interior
of K,

(ii) mappings of the class €2 in K such that the system of three
equations

(161) ———’Ll/y(.’l}, ’!/) - ’Uw(fl), y)a
)16,) — Uz (X5 Y) = V(2 Y),
(163) _uw(m1 y) = 'ny(w, y)

has no solutions in the interior of K, while the systems of (16,) and (16,)
and of (16,) and (16,) have in the interior of K a finite number of so-
lutions,

(iii) mappings that fulfil simultaneously conditions (i) and (ii).
In the sequel mappings (iii) will be called regular.
LEMMA 3. There exist regular J-mappings such that the set P is empty.

Proof. Consider the uniparametric family of mappings of K onto
itself
A7) w*(t, x,y) = weos(1—x*—y?) —ysin(l —a?—y*) + o (1 —2*—y*)?,
v*(t, ¢, y) = xsin(1 —x2—y?)+ycos(l— 22— y?)+ to (1l — a2 —y?)*

where ¢ > 0. It can be easily verified that for sufficiently small ¢ all
mappings of this family are J-mappings and that for each of them the
set P is empty. There remains to prove that condition (iii) is also ful-
filled for any ¢t > 0.
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At first, we prove that for any ¢ > 0, sufficiently small, the sys-
tems of equations

(18,) vy(t, @, y)—uz(t, 2, y) =0,
(185) Vay(ty @y Y)—un(t, @, y) = 0,
(185) Vg (ty @y Y)—uzy(t, @, y) = 0
and

(19,) vz (¢ @, y)+-uy(t, @, y) =0,
(19.) Vzz(ty @, Y)+ugy (¢, @, y) = 0,
(195) Vry(t, @, )+ upy(t, ®,y) = 0

have no solutions in the interior of K.

Suppose the contrary. Then there exist numbers ¢, >0, ¢, — 0 such
that one of the systems (18) and (19) has a solution z = z,, y = y, for
l=1,(n=1,2,...). Suppose that it holds for (18); for (19) our reasoning
would be analogous. It is possible to assume, choosing eventually sub-
sequences, that the points (2., y,) tend to a certain limit point (z,,y,).
Then the system (18) is satisfied for t = 0, # = #,, y = y,. This, however,
implies x, = 0, y, = 0, a8 it is easily seen. Thus by the mean value theorem
we have

(V3 — Uat) tn~+ (Vg — Uirz) T+ (V3 — UZy) Y = O,

(V2ye— Waizt) b+ (Vg — Wiaw) T+ (Vg — Wey) Yn = O,

(Vyut— Yazyt) tn+ (Vzyy — Wzay) T+ (Vyyy — Ugyy) Y = 0,
where the values of partial derivatives are taken at certain points depending
on n and situated on the segment connecting (0, 0,0) and (., Zn, ¥.).

Hence
* * * * * *
’vyt — Uyy 'vxyt — Uyt 'vyyt — uwyt

%* * * * * *
Vey—Uze Vpoy— Wgggw Vgyy— Uzey | = 0.
* %  J %k * *
1 Vyy — Uzy  Vgyy— Ugzy  Vyyy — Uayy
By letting » — oo and in view of (18,) and (18;) we get

* * * *
'Um:y — Uggy 'vxyy - 'u’w:cy
(20) * * * * =0
Vayy — Uaxy  Vyyy— Uayy
or

(21) Uy — g =0,
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where the values of partial derivatives are taken at the point (0, 0, 0).
Now, from (17) we get at the point (0, z, y)

%(”;—“3;) = (y?—?)sin (1 — 22— y?) — 2xy cos (1 — 22— ¥?)
— (42— a?)sin1 — 2zycos1+ O (a* + 222y%+4'),

Hot—u}), = —wsinl—yecosl4O0(x*+y?),
}(or—uk), = ysinl—azcosl+ O (w2 +y?).
Therefore at the point (0, 0,0) one has
(22) (V:—ul)pe = —4sinl, (vj—ul)sy = —4cosl, (v;—uz)y = 4sinl

and, in consequence, the determinant at the left-hand side of (20) is equal
to —16. Hence (21) must hold. But uf = v/ = #(1—2*—y?)? and so
we have u¥ =1 and v}, — 0 at the point (0,0, 0), which contradicts
formula (21).

Let us now prove that for sufficiently small ¢ >0 the systems of
equations (a) (18,), (18,); (b) (18,), (185); (¢) (194), (195); (d) (194), (195)
have at most a finite number of solutions in the interior of K. We prove
it only for the system (a); in the remaining cases the reasoning runs ana-
logously.

Suppose that there are numbers t, >0, t, — 0 such that the system
(a) has infinitely many different solutions (Zmm,¥mn), m =1,2,...,
inside K and that for every n the points (@mm, ¥mn) tend to a certain li-
miting point (a,, y,), and the points (y,y,) to a certain point (g, ¥o)
(we can assume the validity of the latter conditions by eventually choo-
sing subsequences). We shall show at first that (g, ¥o) # (0, 0). By the
mean value theorem we have

(V8 — Wke) (@mn — @) + (05, — %3y) Yiun— Yn) = 0,
(Vg — W) (Fpun— %)+ (V2 — Yaey) (Yun— Yn) = 0,
where the values of partial derivatives are taken at certain points si-
tuated on the segment connecting (f, @n, ¥n) and (tn, Tpn, Yma). Hence
ke vl t|
%

% £ *
Vyy— Ugy  Vwyy — Uzay |

For m — oo in view of (18,) We get vl = Wi O Uy, = Uz, Where
the values of partial derivatives are taken at the point (try Ty Yn). IE
we had , = 0 and y, = 0, then v}, = u,, would yield a contradiction
with (22) for n — oo. Similarly, if we had v}, = uz,, then the point
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(tns @ny yrn) would satisfy the system of equations (18), which is impos-
sible as it was already proved. Thus z, + 0 or i, +* 0. But it can be easily
verified that in this case the system of values ¢ =0, o =z, y =y,
does not satisfy the equation (18;) i. e. at this point (vy—uy), # 0. Hence
it follows that in a certain neighbourhood of the point (0, z,) there exists
a function y = f(¢, #) analytic in both variables, ¢ and «, and such that
the equations

(23) ”;(tvm’y)_u;(tyw1y) =0, y=f(

are equivalent in a certain neighbourhood of the point (0, @4, ¥o). Now,
according to the definition of sequences {t,}, {(Zpn, ¥mn)}, one has
(24,) 'U;(t;n - y;nn) —uz(tn, ‘D;nny W == 0,

(24,) ”::y(t;u m;nn! y;rm)“' u;x(t;u m:nny y;nn) =0

for all indices m, n. Thus, taking into account the properties of these
sequences, we obtain from (24,)

(25) Yun = f(tns Toun)

for sufficiently large n and m. Hence and from (24,) it follows

(26) Vay (tns Tuny f(ty @nn)) — Wi (try Touny F (s @pn)) = 0.
Then, putting

(27) By (@) = o3y (tn, @, f(tny @) — ule (tr, @, f(tn, 2))

in a suitable neighbourhood of the point x;, we see, in view of (26), that
for n sufficiently large, the analytic function (27) of one variable z va-
nishes in a sequence of points ., (m =1,2,...). Let us prove that
for sufficiently large m there are among these points infinitely many
different ones. In fact, in the opposite case the sequence {,,,} would
contain, for arbitrary large n, infinitely many identic terms w,'ﬂjn
(J =1,2,...). Consequently, in view of (25), for sufficiently large j the
terms

(28) Y = Fllny Dnn) (G =1,2,...)

would be also identic against the assumption that the sequences

{(@mny Yma)} (m =1,2,...) consist of different terms. Thus, for large =,
the (analytic) functions (27) would vanish at infinitely many points,

whence they would be identically zero. Therefore, for n — co we had

(29) ’v:y(oyw)f(oyw))"“u;m(oa"psf(oaw)) =0
in a suitable neighbourhood V of x,. Moreover, from (23), we had in V

(30) - vy(0, @, £(0, 2)—uz (0, 2, (0, x)) = 0.
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We easily deduce from (17) that the equations (30) and (29) yield
the following identities in V:

(f*—x?)sin(1 — 2% —f2) — 2zfcos (1 —22—f%) = 0,

— (x4 22%f)sin(1 — 22— f?) — (f — v®+ xf%) cos (1 — 22— f2) = O,
where f = f(0, ). From each of the above identities it follows that f
is a transcendent function. On the other hand, eliminating from them
sin(1—x2—f?) and cos(l1—x2—f?), we conclude that f is an algebraic
function which yields the desired contradiction. Thus the system of
equations (18,), (18,) has at most a finite number of solutions inside K,
and Lemma 3 is proved.

5. 1In this part we shall solve the problem of continuability of the
branches discussed in Lemma 2 inside K for J-mappings which fulfil
conditions (i) or (ii).

LemMmA 4. 1° If (1) i8¢ a J-mapping which fulfils conditions (i)
and for which the set P is empty, then equation (3,) is satisfied along two
disjoint reqular arcs lying inside K except their end points, issuing from
(1,0) and (—1,0) respectively and ending either in (0,1) and (0, —1) or
in (0, —1) and (0, 1).

2° If (1) s a J-mapping which fulfils conditions (ii) and for which
the set P is empty, then equation (3,) is satisfied along two disjoint reqular
arcs lying inside K except their end points, issuing from (272, 27 and
(—2712 — 27 respectively and ending either in (—2712, 2712 and
(272, —27Y%) or in (27Y%, —271) and (—2713, 2713,

Proof. We shall prove only the first part, the proof of the second
being quite analogous. We shall apply here a method similar to that
used by Charzynski (3).

Consider the following system of differential equations:

de/dt = e[vy, (2, y) — gy (2, y)],
(31) (t=0,x*+y* <1)
dy|dt = &[uz (2, Y)— vy (2, y)]

with the initial conditions

(32,) z(0) =1, y(0)=20
or
(32,) z(0) = —1, y(0) =0,

where the equation x?+4y% = 1 is admissible only for { =0 and £ =1
or —1 has to be so chosen that the speed vector (2'(0),y’(0)) at the ini-

(®) Z. Charzynski, Uniformisation des fonctions. Remarque sur les courbes pla-
nes, Bulletin de la Société des Sciences et des Lettres de Lodz IX (8) (1958), p. 1-12,
especially p. 3-7.
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tial point be directed towards the interior of K. From Lemma 2 it follows
that this is always possible (comp. (11)).

We confine ourselves for the moment to the system (31-32,). Let
us notice that, in view of Lemma 1, this system has a first integral of
the form

(33) Oy (@5 Y) — Uz (2, y) = vy(2(0), y(0))— u(x(0), y(0)) = 0.

Next we observe that (31-32,) has at most one integral solution.
In fact, in view of (i) and since (33) is the first integral, the right-hand
sides of (31) do not vanish simultaneously along the integral curves of
(31-32,). Hence we infer immediately that every solution of (31-32,)
satisfies the equations

(34,) y = f(w),

(34,) dx(dt = e[vy, (wyf(m))_' Uy (m,f(w))]
or the equations

(35,) r = g(y),

(35,) dy ldt = e[tz (9(¥)5 Y)— 2y (9(%), ¥)]

in some neighbourhood of any of its points (t,, «,, ¥,), where the right-
-hand sides of (34,) resp. (35,) denote implicit functions defined by the
first integral (33) in a neighbourhood of (x,,%,). From the local uni-
queness of solutions of the system (34) resp. (35) passing through (t,, z,, ¥,)
we easily deduce the uniqueness of solutions of (31-32,) in the local sense
and, consequently, also in the integral sense.

Now we see, owing to a well-known existence theorem, that the
system (31-32,) has exactly one integral solution x = ,(t), ¥ = w,(¢),
0 <t<t. Moreover, to distinct values of # and #’ there correspond
distinet values of each of the functions ,(f) and y,(f) (see Charzynski,
loc. ecit. (3), p. b).

We now show that t, < co. In fact, since the systems (15,), (15,)
and (15,), (15;) have only a finite number of solutions, we conclude by
(31) that x;(t) # 0 and y;(t) # 0 except for a finite set. Therefore, if
our solution were defined for all ¢ > 0, there would-exist limits

im ,(t) = a, limy, (1) = b,

t->o00 t—o0

where a, beK, and, in view of (33) and (31), we had

(36) Ug(a, b) = vy(a, b)
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and (see Charzynski, loe. cit. (3), p. 6)

Em 21 () = vy (@, b) — Ugy(a, b) =0,

}im Y1(t) = Ugg(@, b)— vy (a, b) =0,
against condition (i).
Since ¢, < co and since the derivatives x;(f), y;(¢{) are bounded,
there exist limits
lim z, () = @,(t,), Lmy,(t) = y,(%)
t—>t1 t—-btl
and the point (ml(tl), yl(tl)) must be situated on the circle K*. The sup-
position that

(37) 2(t) = @,(0) =1,  yy(t) = 4,(0) =0

leads to a contradiction which can be shown, in account of Lemma 2,
by a reasoning analogous to that used by Charzynski, loe. cit. (), p. 7.
Hence, as the functions (1) are of the class €%, we infer from (31) that
x,(t) and x,(t) are of the class C'; so they determine a regular arc in the
closed interval

(38) r=ux,(t), y=uy(t) (0<t<).

Notice that according to (33) and (36) equation (3,) is satisfied along
arc (38). So there remains only to investigate the end of this arc.

In virtue of Lemma 1 and (3,) we have only the following possi-
bilities (as (37) has been eliminated):

xy(t;) = 0, Yi(t) =1,
x.(t) = 0, Y1(t) = —1,
z,(t) = —1, () =0.

We show that the third of them cannot occur. In fact, assume the
contrary. Then, reasoning similarly as in the case of (38), we can prove
the existence of a regular arec

(39) = &(t), y=7yt) (0<t<I),

issuing e. g. from (0, 1) (resp. (0, —1)), situated inside K, except its end
points, and such that (3,) is also satisfied along (39). Moreover, none
of the arcs (38) and (39) can contain the other, since in this case it would
contain at least three points (1,0), (—1,0), (0,1) on K*. It follows
that the arcs (38) and (39) must be disjoint, since in the opposite case
there would exist meet points of (38) and (39) such that in some neigh-
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bourhood of them these arcs would be locally different. This, however,
cannot occur, since in view of (i) they are both locally gemetrically de-
fined in K by (31). On the other hand, are (38), which connects (1, 0)
and (—1,0) in K, and arc (39), which connects (0,1) with one of the
points (1,0), (—1,0), (0, —1) in K, evidently always have common
points, which yields a contradiction. In this way the third case is
excluded and thus only first and second cases are possible.
In the same way we prove the desired properties of the are

(40) v =ay(t), Yy =y(t) (0<1t<ty),

which corresponds to system (31)-(32,). So there remains to show that
the arcs (38) and (40) are disjoint, in particular that each of the cases

Zy(t) = @a(t) =0,  y,(ty) = Ya(ts) = 1,
@y (1) = @5() = 0, Y, (t) = ys(fy) = -1,

is impossible. We show this by a reasoning similar to that concerning
arcs (38) and (39). Consequently, arcs (38) and (40) have all properties
required by Lemma 4 and thus the first part of this Lemma is proved.
As announced above, we omit the proof of the second part of Lemma 4.

6. We shall now investigate meet points of the arcs defined in the
parts 1° and 2° of Lemma 4, which we will call shortly arcs of first and
second type respectively.

Considering first the arcs of the second type we see that each of
the points (5,) is connected by some of them with one of the remaining
points (5,). Further, considering the arcs of the first type we see that
the following cases are possible (comp. Fig. 2):

1. One of the arcs connects (1,0) and (0,1) while the second of
them connects (—1, 0) and (0, —1). Then the first one disconnects K
between (2%, 27'%) and the remaining three points from (5,); conse-
quently this arc must have meet points with that arc of the second type
which connects (27'%,27'%) with one of the remaining points (5,). The
second arc disconnects K analogously between the antipodal point
(—27"%,,—27"%) and the remaining ones from (5,) and, consequently,
it must have meet points with that arc of the second type which connects
(—27"% —27') with one of the remaining points (5,). Thus, in any case,
there exist at least two meet points of the arcs of the first type with the
arcs of the second type.

2. One of the arcs connects (1,0) and (0, —1) while the second
of them connects (—1,0) and (0,1). Reasoning in an analogous way
as in the first case we show again that there exist at least two meet points
of the arcs of the first type with the arcs of the second type.
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(277"

Case 1A

(01)

(-2 ") (@77 7"

(-1,0)

s (77-7") (g7 { W[5 -p712)

(0,-1) (0-1)
Case 2A Case 28

Fig. 2

(_2"/2_2"”2)

Notice now that since the Cauchy-Riemann equations (3,) and (3,)
are satisfied along the arecs of the first and of the second type, the meet
points of these arcs are conformality points of mapping (1). Thus we
have

THEOREM 2. Any regqular (*) J-mapping (1) such that the set P is
empty, has at least two conformality points inside K.

From Theorems 1 and 2 follows immediately

THEOREM 3. Any regular J-mapping (1) has at least one conformality
point in the closed unit disc K.

7. The obtained result enlightens the hypothesis of Loewner accord-
ing to which any one-to-one mapping of the unit dise K onto itself,
belonging to the class C!, preserving the boundary and satisfying inside
of K relations (2), has at least one conformality point in the interior
of K.

(!) The regular mapping was defined on p. 85.
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