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ON THE TOTAL CURVATURE OF SURFACES IN E*
BY

PETER WINTGEN (BERLIN)

It is well known that the total curvature of a surface is closely linked
with the topology of the surfadce. The Gauss-Bonnet theorem is the best
known example. One may expect that topological or differential topolo-
gical data of the imbedding or immersing map can be used to obtain
further interesting results of this kind. In this note we present some
theorems dealing with properties of the curvature integral of a closed
surface in the Euclidean 4-space in dependence on the imbedding or im-
mersing map. Typical results are the following two corollaries.

COROLLARY A. Let f: §%— E* be an immersion of the sphere in E* and
let H be the mean curvature, and I the self-intersection number in the sense
of Whitney. Then

[H*d8 > n(3+1).
82

(It is well known that I is the only immersion invariant up to
regular homotopy.)

CorROLLARY B. Let f: X* — E* be a differentiable regular imbedding
of a closed 2-mamifold and o the minimal number of generators of the funda-
mental group =, (B*—f(X?)). Then

_{szX2 > 4mp.
x2

(Note that Corollary B gives an improvement of the Willmore-Chen
inequality for imbeddings with non-trivial knot group.)

1. Curvature functions. Let x: X? - E* be an immersion of a two-
dimensional manifold in the Euclidean 4-space. We use a local orthonorm-
al moved frame ¢;(%) (¢ =1,2,3,4) with ¢,(%) and -6,(u) tangential,
and eg(#) and e,(u) normal at x(u). The local forms a,, 05, and oy with
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wy = —ogx (4, =1,2,3,4) are defined by
4
dr = e,0,+ 6,0, and de; = Ze,w,-,-.
j=1

Further, we have the first fundamental form
da* =.d}+ o
and the two second fundamental forms |
a = 0,w;3+ 00,3 and = 0,0+ 00y,

depending on the choice of the normal vectors ¢; and ¢,. The third funda-
mental form is the square of the differential of the Gauss mapping: We
represent the elements of the Grassmannian manifold G,, by decompos-
able bivectors. The Gauss mapping is defined by

g(u) = 6,(u) A 65(u)

which gives a differentiable mapping g: X* - G, ,. The differential of ¢
is given by

dg == del/\eg_l‘el/\dezn

The third fundamental form is induced by g from the Riemannian
metric of G,, and is given by

2 2 ) 2
d92 = w3+ 0y, + w3 1 Wy,

We denote the components of «, f, and dg? with respect to the local
base ¢,, ¢; by @ = (a,5), b = (b,p), and ¢ = (¢,5). The Gaussian curvature K,
the mean curvature H, and two further curvatures ¥ and % are given by

K = det(a)+det(b), 4H® = [Tr(a)F+[Tr(b)?,
9h = Tr(e), W = det(e).

The Lipschitz-Killing curvature which depends on the unit normal
vector ¢(p) = cosgpe,+singe, is defined by

L(p) = det(cospa+singd).

The integration over the normal vectors around a point x(u) gives
the mean absolute Lipschitz-Killing curvature

) == [ I(e)lde.
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The curvatures satisfy the following relations which are easy to

prove:
‘e

(1) k<h,
(2) 2H® = h+ K,
(3) 1<k,

(1) is the well-known inequality between the arithmetic mean and
the geometric mean of the eigenvalues of ¢. Relation (2) follows from
¢ = a®+ b2 To prove (3) we assume, by a suitable choice of ¢; and e,,
that L(p) takes the form

L(p) = p8in%p + p,c08%p
(Otsuki frame). By integration we get

27
1 .
l <.;f |1 8i02¢ + pycosip|de < |4y 4 |15l
H

We obtain I < |det(a)| + |det(b)| for this frame. Now we apply the
inequality

(4) det (a® 4 %) > (|det(a)| + |det(b)])*

which holds for arbitrary quadratic matrices @ and b. (By multiplication
with suitable unimodular matrices on both sides we can assume that
a and b take the diagonal form. (4) reduces to the inequality between the
arithmetic and geometric means of the diagonal elements.) The left-hand
term of (4) is det(c) = k.

Remark. As far as we know the curvature k¥ has been considered
by Leichtweiss at first, who has shown that k¥ = 0 is characteristic for
torses (cf. [7]).

2. Gauss mapping and total curvature. In this section we prove
a theorem on closed orientable immersed surfaces. It is well known that
the Whitney self-intersection number which measures the algebraic number
of self-intersections is the only immersion invariant up to regular homo-
topy. The twice of the self-intersection number is also given by the Euler
number of the normal bundle or by the degree of the spherical map from
the unit tangential bundle to the unit 3-sphere (cf. [6]). It follows from
the Gauss-Bonnet theorem for the normal bundle that we can write the
self-intersection number as the integral

1 /
I-— deX’,
x2
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where K’ is defined by dws, = K' 0, A 05,. But we make no use of the formula
here. Our aim is the proof of the following theorem:

THEOREM 1. Let f: X* — E* be an immersion of an orientable closed
two-dimensional mamifold X* with genus p and self-intersection number I.
Then the total curvature salisfies the inequality

[kaX? > 2n(I+|p—1)).
X2

Remark. Of course, the result above is not the best possible. Our
interest in this result is stimulated by the following observation. The
total Lipschitz-Killing curvature [1dX* which is often considered in the
literature (see, e.g., [3]) and also in the next section is not related to
the self-intersection number. There are immersions with

fldX"’<41r+s

for every given self-intersection number and arbitrary ¢ > 0.

Our proof of Theorem 1 is based on a result of Chern and Spanier
about the homology of the Gauss mapping. In their paper [2] Chern and
Spanier have given a homeomorphism of @, , on 8°x 8 which is, in fact,
a homothety of Riemannian manifolds. Indeed, let

G,. = 0(4)/80(2) x 0(2)

be the Grassmannian manifold of oriented 2-planes in E* through the
origin. As in Section 1, we consider @, , as a submanifold in the Eucli-
dean space of bivectors of E*. The equivariant imbedding :: G, , > E°
is defined by ¢(g9) = e, Aeé,, where ¢ is the plane spanned by the ortho-
gonal unit vectors ¢, and 6,. We use a fixed orthogonal base f; in E* and
write :
¢(9) 1<¢‘§<4 ayfi A Sy

The image ¢(@,,) is defined by the two relations ¢(g)* =1 and

t(g) A ¢(g) = 0 or written in coordinates as follows:

(6) Sa =1,

i<j
/
(6) Qy3 Gyy + Gy Oy + Gy3 0y, = 0.
After the orthogonal coordinate transformation
'/5‘”1 = 3+ ayy, '/5?11 = Gy — Gy,
V2w, = a5+ asy ‘/Eyz = Gy3 — BGyyy

l@w, = @y3 1 Gy, '/53/3 = Qg3 — B34y
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we obtain, as defining relations for @, , in E¥,
oi+o;+a; =1/2 and  yi+yity; =1/2.

Therefore, @,, is isometric to the Riemannian Cartesian product
of the 2-sphére 82 (¥ = 1/2) with itself.

Let z: X* — E* be the given immersion with the corresponding Gauss
mapping g: X*—->@G,,. The induced homomorphism of the homology
groups

[/ H,(X?) ”Ha(GA.z) =ZxZ

is calculated in [2] as

20,[X*] = (s — Xns 26+ 2n)»

where [ X?] denotes the fundamental class of X?, and y, (respectively, y,)
stands for the Euler number of the normal (respectively, tangential)
bundle of X2. In the following integrals we use absolute forms (see, e.g., [8],
Chapter Ilf). If we denote by p, (respectively, p,) the first (respectively,
second) projection of G,, on 8}, then we obtain

[raX*> [ (pi0g)* a8}
b. b.c

(We can interpret kdX* as a volume element of g(X*) and use the
inequality kdX? > |(p,09)*d8%|.) The second integral is estimated by

[Up109)* a8 > | [(p109)*d8}| = |deg(p109)| [@8: = |gp— galm
x2 x2 2

5,

and, analogously,

[#aX? > |+ yul m.
x2
These inequalities give together
[ 5aX* = m(lzel + 1al)-
x2

Theorem 1 follows from y;, = y(X*) = 2(p —1) and y, = 2I.. Corol-
lary A in the introduction follows at once from (1), (2), and the Gauss-
Bonnet theorem.

3. Total curvature of knotted surfaces. In this section we consider
only closed surfaces without sclf-intersections. Let X* — E* be a closed
surface. Let ,(E*— X?) be the corresponding knot group and ¢ the mini-
mal number of generators. We call o the knot number of X2,
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THEOREM 2. Let X* < E* be a closed surfabe with Euler characteristio
number y and knot mumber o. Then the total absolute Lipschitz-Killing
curvature satisfies the inequality

(7) [1ax? > 2n(40— 7).
x2

Proof. We start with the following simple lemma:

LEMMA 1. Let f be the restriction of a linear function h on X* which
has only non-degenerate oritical points on X*. Then the number v (f) of
local minima satisfies v,(f) = o.

Without loss of generality we can assume that f takes different values
at the critical points p; (¢ = 0, 1, ..., k) written in the order induced from f.
Let a; be real numbers with

A< f(Do) < ... < [(Pr) < Gpyy--

By the van Kampen theorem, for the fundamental groups of the
spaces H; = {p; h(p) < a;, p ¢ X’} we obtain:

m(H;,,) ~ m,(H;)+ one generator if p; is 2 local minimum;

7 (H;,1) ~ m,(H;)+ one relation if p; is a saddle point;

7ty (Hj ) ~ my(H;) if p; i3 a local maximum.

(See [5] for a more precise description of the knot group.) The lemma
follows from these relations by induction on j.

We denote by », (respectively, »,) the number of saddle points (re-
spectively, local maxima). Since »,(f) = »,(—f), we have »,(f) > o, and
the Morse equality gives »,— v, +v, = . For the total number of critical
points of f we obtain

v(f) = 4e—1x.

Theorem 2 follows now if we calculate the curvature integral via
the spherical map s: N'— §° from the unit normal bundle on the unit
3-sphere §°. We denote by ¢, the real function ¢,(u) = <e,u) defined
on X2, We use a suitable normed density 2 on N' with LQ = s*d$®
and obtain

m [dX = [|LIQ = [s'd8® = [card(s™'(e))dS"®
X N1 N s3

(see, e.g., [3]). Without loss of generality we can assume that ¢, is a Morse
function. Since card(s~(6)) = »(¢,), we obtain

= [1dX*> (40— )2
x2
and the proof is complete.
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From (3) we get
(8) [kaX? > 27(40—7)

and from (2) we obtain Coro]la.ry B.

Finally, we give an example to show that the bounds in (8) and,
therefore, in (7) are the best under the above assumptions. Let X bo
the k-fold connected sum of the clover leaf knots in E°. The knot number
of this knot is X+ 1 (cf. [4]). The spinning construction of Artin [1] gives
a knotted sphere in E* with the same knot group. We have to show that
this can be represented in the knot type with the total curvature

[#AX < 4m(2k+1)+e

(e arbitrarily small). To do this we use an open arc in the half plane E?
perpendicular at the two endpoints to the y-axis. We can assume that
this arc has the total curvature f kds = n(2k+1) and is in the C-topology,
the limit of a sequence of open arcs representing the knot type X,. (The
corresponding knot is represented by the union of the arc and the segment
joining the endpoints.) By rotation of this arc around the y-axis in the
(@, ¥, 2)-space we obtain an immersed sphere in E* < E* with the total
curvature [kdS8® = 4n(2k+1). This immersed sphere is the C,-limit of
a sequence of imbeddings of S8 in E* coming from the above-given sequence
of arcs by Artin’s spinning construction. It is clear that the corresponding
total curvatures converge to 4x(2k+1). -

It is not difficult to extend our example, by a suitable connected
sum construction, to manifolds with arbitrary genus p. So we have

THEOREM 3. Given integers p > 0 and o > 1, there exisis an imbedding
of an orientable closed manifold X* with genus p and knot number o with
a total absolute curvature arbitrarily near 4w (20 +p—1).

Remark. The relation between the generator number of the knot
group and the critical point number of a height function holds also in the
higher-dimensional case. By a method like [4], Sunday [9] has recently
shown an inequality for knotted spheres of dimension #» in E"*?, namely
v(f) = 2. But for all » > 1 Sunday’s inequality can essentially be im-
proved (see the author’s forthcoming paper [10] including also results
for knotted spheres with eyeclic knot group).
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