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Introduction. In the present paper so-called functionally uniform
symmetrical algebras are considered. The idea of treating such algebras
has arisen in connection with a problem given by E. Marczewski which
consists in the estimation of the number of independent elements in binary
algebras (see [2]). In section 4 of the present paper we prove that a certain
functionally uniform algebra is the only extremal algebra for those es-
timations in case of binary algebras with constants. The existence of only
four functionally uniform symmetrical algebras has been proved in sec-
tion 1, representation theorems and other properties are given in sections
2 and 3.

1. Definition and simplest properties. Let 2l = (X;g) be an ab-
stract algebra with one fundamental operation g¢(z,,...,2,) which is
symmelrical, i.e. invariant under every permutation of the variables.
We shall call A a functionally uniform symmetrical algebra, or shortly
FUS-algebra, if every algebraic operation has one of the following forms:

(a,) f(@4y..., ®y) = ¢ with some ceX,

(ag) f(@yy ..., xp) = x; with some ie{1,2,...,m},

(@) f(@1y ooy @m) = 9@y ooy y) A< <m for j=1,2,...,n).

THEOREM 1. If in an algebra A there is a symmetrical n-ary ope-
ration g such that every algebraic (2n—1)-ary operation f has one of the
forms (a,), (a;) or (a;s), then g satisfies one of the following conditions:

(b)) g is unary and g(g(x)) = g(@),

(by) g is unary and g(g(x)) = =,

(03) g(g( @1y -eny Tn)y Buyry-eey Banga) = ¢ with some ceX (in the case
n =1 this shall be understood as g(g(x)) = c),
(by) g(g(wl, ceey @n)y Tty oeey wzn—l) = §(@ny1y «++y Tan_1; T5) With some

je{n+1,n4+2,...,2n—1}.
Proof. Note at first that g either is constant or depends on all its
variables. In the first case it satisfies (b;), 30 we may assume that g depends
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on all variables. Consider first the case n = 1. From (a,), (a,), (a,) it follows
that f(z) = g(g(w)) is either trivial or constant or equal to g(x), and so
one of the equalities (b,), (b,), (bs) holds.

Now let n > 1. The operation ¢(g(®,, ..., #n), Tny1s -+ Tan_,) depends
evidently on all or none of the variables z,, ..., x,, because g is symmetric-
al. Similarly, it depends on all or none of the variables @, ;, ..., Zsn_1
if n # 2. If follows that for » s 2 this operation cannot have the form
(a;) or (a,), hence, it must have the form (a;).

Now let n = 2. If g(g(x,, 2,), ¥5) = @5, then

g(g($17 %3), (@3, w4)) = g(@3, @),

g(g(w:i’ x4)7 g(a:l, xz)) = g(wl’ w2)7

but the left-hand sides of the last equalities are equal, and it follows
that ¢ is constant, contrary to our assumption. Consequently, in the
case n = 2 the operation g(g(ml, ceey Tn)y Bppryeeey wzn_l) must have the
form (a;). Hence we have

(b5) 9(9(901, tee wn)’ Lpp1y ooy xzn—l) = !](w«cl, ceey win) with 1 < i]‘ <
< 2n—1.

Suppose first that, for some j, ¢; < n and the operation on the left-
hand side of (bs;) depends on z;,. Then every index 1, ..., » must occur
among the ¢,,...,1%, and so we have

g(g(a’n '-'7a7n)7wn+1, -'°7w2n—1) =g($17 '“’mn)’

whence

g(g(m].’ '°'7wn)7g(y17 "'7yn)9wn+27 “’ya"Zn—l) =g(m17"'7a"n)

and similarly

!](g(?/u ceryYn)y §( @1y ooy Tn)y Tnyoy ""wzn—l) = g1y -+ Yn))

but the left-hand sides of the last two equalities are equal in view of
the symmetry of g, and so ¢ must be constant, contrary to our assumption.

If the operation on the left-hand side of (b;) is constant, then (b,)
is true. If not, then it must depend on some ;; with ; > n+1. But now
every index n-+1,...,2n—1 must occur among the %,,...,%,, and no
index < n can occur there as otherwise all variables x;,...,z; would
be different, and so the operation in (b;) would depend on all of them.
But it cannot depend on a variable x; with j <n as we just proved.
Consequently, exactly one of the indices n+41,...,2n—1 must occur
twice. This proves (b,) and so the theorem is proved.

2. Representation theorems. Now we prove theorems concerning
the representation of FUS-algebras.



FUNCTIONALLY UNIFORM SYMMETRICAL ALGEBRAS 183

At first observe that if f is a retraction of a set X onto its subset
Y, i.e. the identity on Y, then the algebra (X, f) is a FUS-algebra satis-
fying (b,), and every FUS-algebra satisfying (b,) can be obtained in
this way. Similarly, if f is an arbitrary involution acting on a set X,
i.e. ff(x) = x, then the algebra (X, f) is a FUS-algebra satisfying (b,),
and every FUS-algebra satisfying equality (b;) can be obtained in
this way.

It remains thus to prove representation theorems for FUS-algebras
satisfying (bs) or (b,).

THEOREM II. If in a FUS-algebra (bs) holds, then this algebra has
the form (A o C; g), where A and C are disjoint sets, C contains a distinguished
element 0, and there exists a function f defined on the set of all n-tuples of
elements of A with values in C (n i8 the number of arguments of g) such that
the operation g is defined as follows: if at least one of elements a,, ..., a,
belongs to C, then g(a,,...,a,) =0, and if not, then g(a,,...,a,)
= f(@1y ..., @n).

Proof. Suppose (X, g) is a FUS-algebra satisfying (bg). At first
we shall prove

(be) glc, @2y ..., Tn) =c.
Indeed, by (b,),

g(C,-’Dz, veey @n) =g(g(g(a71’ °'-7mn),$n+19 "'7w2n—l)yw21 --wmn) =C.

Let now C be the set of all ae X such that g(a, 2,5, ..., x,) = c.

In view of (bg), C is non-empty. It is easy to see that every element
of the form ¢(a,, ..., a,) belongs to C. Let A be the complement of C,
and let f(a,,...,a,) = g(a,y...,a,). From the symmetry of g and from
(by) it follows that the algebra has the form described in the theorem.

THEOREM III. If in a FUS-algebra (b,) holds, then this algebra
has the form (A o C; g), where A and C are disjoint sets, C contains a distin-
guished element 0 and there exists a function f defined on the class of all
subsets of A having at most n elements with values in C such that f(@) = 0
and g(ay, ..., an) = f({ay, ..., an} ~ 4).

At first we need some lemmas. We shall not repeat in them the assump-
tion that the algebra is a FUS-algebra satisfying (b,).

LEMMA 1. If 1 <i < ny then (@1, ...y Tn_1y %) = g(T15 .y Tn_1y Tj)-

Proof. Let us assume that ¢ < j. If ¢ > j only typographical changes
are needed.
From (b,) it follows

g(g(yly cory Yn)y By ---’mn—l) = g(®1y .oy Tn_1y ),
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whence

G(@yy ooy Bn_yy @) = 9(9(?/17 veey Yn)y By °--,wn—l)
= g(g(yu coryYn)y Bag ooy Bi1y Tijy Bigry eeey Bi1y iy Tjgpy eeey wn—l)
= G(@1y ooy Bi1y Bjy Tigry «ooy i1y Biy Bjyy,y ---;-"vn—l,-'lf;i)
= g(®1y eevy Tn_1y Ti).

By repeated application of Lemma 1 we get

LEMMA 2. Every non-constant and non-trivial algebraic operation can
be written in the form

g( @1y eeey By I RERY -’171,,_,‘),

where 1 <j; < k < n, and for arbitrary m; (1 < m; <k) we have
g(wl,-°-7wk’a’i17"°7mfn_k) =g(w17°-'7wk7wm1,'--9mm,,_k)-

LEMMA 3. For arbitrary ..., o, the following equality holds with
some fixed c:

g(g(w}’---’w}»)7'--’g(w?’ aa’:)) =cC.

Proof. By (b,) and Lemma 2 we have

9(9(‘”}7 ceey @n)yeny glal, ---7‘17:)) = g(g(w}, ceey Bn)y ey glayY, ---7-’1?:.;4%

i 3 k 1]
g(wl“, ---75'7:;“)! very §(@Fy ooy X)), gy, ---’wn))’

where ¢ =1,2,...,n and k # 4. Consequently, the operation on the
left-hand side of the last equality does not depend on any variable. Hence
it is a constant.

We shall say that an element a is reducible if for arbitrary x,, ..., ,_,

G(By Byyoooy@Bn_y) = G(@1y ooy Tp_yy Tn_1)
holds.
LEMMA 4. The constant ¢ appearing in Lemma 3 1is reducible.
Proof. By Lemma 2, Lemma 3 and (b,)

g(e, @yy .oy @p_y) = y(g(g(w}’ '-'7“7:&)1 ooy g7, -“’m:))’wl’ ---:mn—l)
= g(@1y vy Tn_yy Tg)

with arbitrary ke(1,...,n—1), q.e.d.
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LemmA 5. If a,,...,a, are reducible, then g(a,,...,a,) = c.

Proof. g(ay, ..., @) = g(as, ..., an, a5) —g(g(wI’“ Tp)y Gy «er a’n)
In this way we replaced a, by g(w,, ., o). In the same way we can
replace a; by g(«%, ..., s}) and the Lemma, follows by Lemma 3.

Proceeding simllarly we obtain the following

LeMMmA 6. If a,, ..., a, are reducible and b,, ..., b, are mot reducible,
then

g(@yyeevy@pybyy..ey by, Bipy oeey Qigy bily ceey by)
=g(byy vy brybryyeny by, )

where p+r4s+t=mn,1 < zw<p,1 <j,,, r, and the k,—s can be
taken arbitrarily from the set {1,2,...,7}.

Proof of Theorem III. Let (X ,g) be a FUS-algebra satisfying
(b,). Denote by C the set of all reducible elements of X, and let A = X\ C.
The set C is not void because every element of the form g(a,,..., a,)
is reducible by (b,) and ¢ is reducible by Lemma 4. If R = A and R has
at most n elements, say a,, ..., a;y (k < n), then define f(R) = g(a,,...,
Ay Gyy ..., @), and put f(@) = ¢. The Theorem is now a corollary of
Lemmas 5 and 6.

3. Corollaries. The following results are easy consequences from
the representation theorems.

(i) A subset of a FURS-algebra is independent iff every of its subsets
consisting of at most 2n elements is independent.

This follows from the observation that every algebraic operation
depends on at most n variables.

(i) A FUS-algebra (X, g) is free in the class determined by the equa-
tion satisfied by g iff

(a) in the case g satisfies (bg) or (b,), the function f is one-to-one and
its range is C\{c},

(b) ¢n the case g satisfies (b,), every element in the image of the retrac-
tion i an image of exactly two elements,

 (e) in the case g satisfies (b,), the involution has no fived points.

Moreover, in all cases the set of free generators is umique.

LEMMA 7. Let A be a FUS-algebra satisfying (bs) or (by). If for
some k < n an algebraic operation h(xy, ..., xx) 18 equal to a constant d,
then d = ¢ and every algebraic operation of not more than k variables is
equal to c.

Proof. h(wy,y ..., o) = g(®s, ..., ®;,). If (bs) is satisfied, then put
here z, = g(x,,...,x,) and use (bs), and if (b,) is satisfied then put
@iy =g(a,{, ...,a,{‘) for j =1,2,...,n and use Lemma 3.
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(iii) A FUS-algebra satisfying (b,) has a basis iff either every ele-
ment of the image of the retraction g is an image of exactly two elements of
the algebra or g is the identity map. .

(iv) A FUS-algebra satisfying (b,) has a basis iff either the invo-
lution has mo fized points or is the identity map.

(v) A FUBS-algebra satisfying (b;) has a basis iff the function f maps
the set of all n-tuples having at least k41 different elements onto C, and
18 one-to-one on them.

(vi) A FUS-algebra satisfying (b,) has a basis iff the function f maps
the class of all subsets of A having at least k41 elements onto C, and is one-
to-one on them.

In (iv) and (v) k¥ is the number appearing in Lemma 7.

We shall say that two FUS-algebras have the same type (b;) if both
satisfy the same condition (b ) with some j =1, 2, 3, 4.

(vii) The product of two FUS-algebras of the same type (b;) s
a FUS-algebra of the same type, and the set C of the product is the
product of corresponding sets C of the factors. (In the cases j = 1,2 we
understand here by C the image of the algebra under g).

(viii) If D 48 a subset of a FUS-algebra, then the subalgebra gener-
ated by D has the form D o D' o (¢), where D' is the image of D ~ A under
f in the types (bg) and (b,), and D’ is the image of D under g in the types
(b;) and (by). (In the last two cases there ts mo c.)

(ix) Every homomorphism of a FUS-algebra in a FUS-algebra of
the same type maps c in ¢’ and carries the image of f resp. g in the corres-
ponding image.

We prove this for the type (bs;). In other cases the reasoning is
similar. Let h be a homomorphism. Then

h(c) = h(g(g(xl, ceey @n)y Bppry eeny xZn_l))
- g(g(h(wl)’ vooy (@) B (@) - h(m2n—l)) =c'.

If a is a reducible element of the algebra, then clearly the element
h(a) is also a reducible element of the corresponding algebra.

4. Number of independent elements. Let us denote by a(2) the
number of elements of the algebra 2, and by ¢(2) the maximal cardinality
of an independent (!) subset of 2[. In [2] was investigated the function
p(n, K;) defined as

min{a(A): A K,, (A) = n},

() in the sense of Marczewski [1].
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where K, is the class of binary algebras having constants with an opera-
tion depending on exactly two variables. It was proved that p(n, K,)
= (n(n+1)/2)+1 and the minimal value was obtained for an algebra
with a fundamental operation g(z,y) = xy subject to conditions: (zy)z
=e¢, 2y = yx, xr = c¢. It is clear that this is a FUS-algebra. Now we
prove

THEOREM 1V. If UK, «(A) =n>2, and a(A) = (n(n+1)/2)+1,
then the binary operation xy in AU satisfies (xy)z = ¢, vy = yx, v = c.

Proof. Let I be the largest independent subset of 2. Thus I has n
elements. Let CI be the subalgebra of 2 generated by I. It contains the

constant ¢, all elements from I, and (;) products of elements of I. Hence

it must coincide with 2. Consequently, every non-constant and non-
trivial algebraic operation of at most n variables must satisfy f(z,,...,
.ery &) = x;; With suitable ¢, j. Moreover, xy = yx because otherwise CI
would have more elements than 2. Consequently, the assumptions of
Theorem I are satisfied, whence (ry)z = ¢ or (xy)z = 2z2. The operation
xx must be either trivial or constant as otherwise the algebra would have
more elements. It cannot be trivial as then (xy)z =2z, and thus wv
= (xy)(uwv) = (uv)(xy) = xy for arbitrary «,y,u,v; a contradiction.
Hence xx = ¢, and so (xy)2z = ¢, and the Theorem is proved.

In the case ¢(2) = 2 this theorem fails to be true as the example
of the group C,xC, shows.

In the case » > 3 one obtains a stronger result, namely

THEOREM V. If a() = (n(n+1)/2)+1, «(A) = n > 3 and there exists
a binary algebraic operation xy depending on both variables, then there is
a unique algebraic constant ¢ in the algebra and, moreover, (vy)z = ¢, vy = yx
and xx = ¢ holds.

Proof. If the algebra does not contain any constants, then from
Theorems 3 and 4 of [2] follows that the algebra contains at least
min (n?, 2" —1) elements, and so more than (n(n+1)/2)+1. But if ¥ has
constants then we can apply Theorem IV to get the desired result.

In the case n = 3 there is a unique counterexample: the algebra
of non-empty subsets of (0,1,2) with set-theoretical addition as the
fundamental operation.

Let 2, = (X; ¢, -) be the free algebra with n free generators in the
class defined by the equations

x(yz) =c¢, aYy =yxr, T =C.

From a result of Urbanik (see [3], Theorem 15.1) follows that
every algebra satisfying the assumptions of Theorem IV or V may be
written in the form (Y; -). It is to see that (Y; -) is isomorphic to .
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