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1. Introduction. In [7] Plonka introduced the notion of a quasilattice
and in [6] the quasilattice was called a bisemilattice. An algebra (B, +, *)
of type (2, 2) is said to be a bisemilatiice if it satisfies the following axioms:

1) 2+ =2, v = o,

(2) sty =y+o, 2y =y o;

3) (#+y)tz =a2+(y+2), (v°y)z2=a(y2)

(in the sequel we shall write xy instead of z-v).

The class of all algebras of type (2, 2) satisfying (1) and (2) is denoted
by V(+, ), and the class of all bisemilattices by B(+, ‘). Of course,
B(+, ) is a subvariety of the variety V (-, *).

An algebra (4, F) is said to be proper if all fundamental polynomials
are different and every non-nullary feF depends on all its wvariables.

For a given class K of algebras and a given integer n > 0 we denote
by N, (K) (or, shortly, N,) the set of all k for which there exists an algebra
Y from K such that the cardinality p, (%) of the set of all essentially
n-ary polynomials over U is precisely k.

In this paper we present two theorems. In Theorem 1 we establish
necessary and sufficient oconditions for a bisemilattice to be a lattice,
and Theorem 2 deals with the set N, for the variety B(, :), namely
we show that the numbers 0,1,2,4,5 are in N, but 3¢ N,. The
equivalence of conditions (i) and (v) in Theorem 1 furnishes an example
for the fact that pure set-theoretical assumptions can have algebraical
implications.

We shall use here notation and definitions from [2] and [4].

2. Denote by B, (+, ‘) the subvariety of the variety B(4, ‘) which
satisfies the additional identity (z+4y)y =y (dually, B, (+, ) denotes
the subvariety of B(+, ) of all algebras satisfying @y +y = y). Members
of B, (+,) (or B,.(+,"), respectively) are called bisemilattices with
one absorption law. Let us mention that there are many interesting sub-
varieties of the variety V (4, ‘); namely, the variety of all lattices, the
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variety of all weak associative lattices (see [1] and [3]), the variety of
all distributive quasilattices (see [7]), the variety of all bisemilattices
with one distributive law (see [5]).

THEOREM 1. Let (B, +,-) € B(+,*) and card B = 2. The following
conditions are equivalent:

(i) (B, +,°) 18 a lattice;

(ii) both polynomials (x+y)y and xy-+y are not essentially binary;

(iii) (zy +v9) (x+vy) is not essentially binary;

(iv) (z+y)y + (xy) is not essentially binary;

(V) p(B, +,°) = 2.

Before proving this theorem we need some lemmas.

Lemma 1. If (B, +, ) 18 proper in B(+, ), then (x+y)y # o and
2y+y #2.

Proof. If (#+y)y= @, then & = (v+y)y = ((z+y)+y)y =2+y
=4Y+& =y, a contradiction. Analogously we prove that ay+y # 2.

Lemma 2. If (B, +, ) 18 a bisemilattice and (z+vy)y 18 commulative,
then (x+vy)y = x+vy (the dual version is true for the polynomial wxy-+y).

Proof. If (z+y)y = (y +a)z, then

z+y = (@+y)@+y) = (y+@+9)(@+y) = (@+y)+y)y = (z+9)y.

As above, 2y +y = yz+ implies 2y +y = xy.

Observe that there exists a proper bisemilattice (B, +, ) for which
(x+1v9)y = #+y. For example, take the set of all natural numbers for B,
the least common multiple [, ¥] for #+y, and max(z, y) for ay.

LemMmA 3. If (B, +, ) is a proper algebra from B(+, ), then (x+y)y
and xy+1y cannot be simultaneously commutative.

Proof. Indeed, if (z4+y)y and xy+y are both commutative
then using Lemma 2 we have z+y = (#+y9)y and 2y = oy +y. From
the latter identity we get xy = wy+vy = vy +o = wvy+vy+ . Hence we
obtain

v+y = (@+y)r =(@+9)y)s = (@+y)(@y) = @+y)(@y+2+Yy)
= ((ey)+ (@ +9))(@+y) =vy+a+y = 2y,

which is a contradiction with the assumption ¢4y # xy. This completes
the proof of the lemma.

‘LEMMA 4. If (B, +,-) 18 a proper bisemilattice and (x+y)y 18 com-
mutative, then xy +y is essentially binary and non-commutative (and, dually,
if vy +vy 18 commutative, then (v+y)y is essentially binary and non-com-
mutative).
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Proof. From Lemmas 1and 2 weget xy+y # xand (z+y)y = ¢ +y.
If 2y+y =y, then

oy = y(2y) = (oY +9)(@y) = (y+ (2y)) (y) = y+ (vy) =2y +y =y,

a contradiction. Thus we have proved that xy 1y is essentially binary.
To get our assertion we use Lemma 3. Analogously one can prove the dual
part of the lemma.

Proof of Theorem 1. Of course, if (B, 4, *) is a lattice, then each
of the conditions (ii)-(v) is fulfilled.

(ii) = (i) follows immediately from Lemma 1 and from the fact that
z+vy and xy are idempotent.

(iii) = (i). If (zy +y)(®+y) = «, then

vy = (@y)y+y)(@y+9) = (2y+y)(@y+y) = 2y +y,
and hence

2= (vy+y)(et+y) = (@y)(z+y) = (y2)(y+2) =y,

a contradiction with card B > 2. Now, let ¥y = (v»y +v)(#+y). Then using
the same arguments as above we get xy +y= v, and hence

y=(y+y)(=z+y) = (@+9)y,
which proves that (B, 4+, *) is a lattice.
(iv) = (i). The proof is similar (dual) to the previous one.

~ (v) =(i). By the assumption we infer that #+y and xy are the only
different essentially binary polynomials over (B, 4, *), and hence (B, 4+, -)
is a proper algebra. If the polynomial (- y)y is essentially binary, then,
by the assumption p,(B, +, ) = 2, (x+¥)y is commutative, since other-
wise p,(B, +, ') = 4, a contradiction. Now, using Lemmas 2 and 4 we
infer that # +y = (#+¥)y, and the polynomial zy + ¥ is essentially binary
and non-commutative, which implies p,(B, +, ) >4, a contradiction.
Thus we have just proved that (z-+y)y is not essentially binary. Using
Lemma 1 we get (x4 y)y = y. Consider now the polynomial xy +y. One
can prove, as above, that also oy 4y is not essentially binary. Hence
(B, +, -) satisfies (ii), which proves that (B, -+, -) is a lattice. The proof
of the theorem is completed.

THEOREM 2. There are no bisemilattices for which p, = 3; however,
there are bisemilattices for which p, =k, where ke {0,1,2, 4,5}, i.e.,
keNyB(+,*) for 0< k<5 and k + 3.

Proof. Of course, every one-element bisemilattice has the property
P, = 0, and hence 0 e N 2(B(+, -)). Observe also that the two-element
semilattice ({0, 1},v) can be treated as an algebra ({0, 1},v,Vv) of type
(2, 2) from the variety B(+, -). It is clear that for this algebra we have
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p; = 1. Therefore 1 € Ny(B(+, +)). Using (v) of Theorem 1 we infer that
2 G-Nz(B(‘*” '))

To prove that 4 € N,(B(+, )}, we take any free distributive quasilat-
tice with at least two free generators (see [7]). Using the axioms of a distrib-
utive quasilattice (see [7]) and the Marczewski formula of [4] to describe
the set A™ () for a given algebra A, one can verify that in such algebras
the only essentially binary polynomials are x4y, ay, (r+v)y, and
(y +x)x. Hence p, = 4.

Now, we prove that 3 ¢ N,(B(+, -)). Let (B, +, -) be a bisemilattice
for which p, = 3. Then (B, +, *) is proper, since otherwise one can easily
check that p,(B, +, *) < 1. Consider the polynomials (#+y)y and a2y + .
By Lemma 1, we have (z+vy)y # xand vy +y #* o. If (¥ +y)y is essentially
binary, then it must be commutative since p,(B, +, :) = 3. Using Lem-
ma 4 we infer that xy + ¥ is essentially binary and non-commutative, and
hence p,(B, +, ) = 4, a contradiction. Thus it remains to examine the
case (z4vy)y = y. Let us now consider the polynomial 2y +vy. Recall that,
by Lemma 1, vy+y #* . If 2y+vy =y, then (B, +, ) is a proper lat-
tice, and consequently p,(B, +,) =2, a contradiction. If zy+y is
essentially binary, then, by the assumption p,(B, +,-) = 3, it follows
that zy + vy is commutative. Now, Lemma 4 implies that the polynomial
(r+1vy)y is essentially binary and non-commutative, which contradicts
(x+9)y = y. Therefore, we have proved that there exists no bisemilattice
for which py, = 3.

However, we prove that there exists a bisemilattice for which p, = 5.
Moreover, this bisemilattice can be taken from the variety B, (4, ).
Consider any free algebra & with at least two free generators in a sub-
variety of the variety B(+, ) defined by the following additional iden-
tities:

@+y)y =y, (wy+y)@+y) =ay+y, (29+9)(yr+2)=ay.
Of course, every lattice satisfies the above identities. Using the

axioms defining the above variety and the Marczewski formula to describe
the set A™(A), we have

ANF) = {w,y,0+y, vy, 5 +y+oy, vy +Yy, yo+2}.

Using again Lemmas 1 and 2 and the fact that & is free in the
considered variety we conclude that z+y, @y, v+y+oy, 2y+vy, yr+o
are the only essentially binary polynomials over %#. Hence p,(#)=>5
and, of course, # € B, (+, -). Thus the proof of the theorem is completed.

Added in proof. We have recently learnt that bisemilattices with
Pps = b were described by J. Galuszka in Bisemilattices with five essentially
binary polynomials (preprint).
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