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1. Introduction. The purpose of this essay * is to highlight the connec-
tions and interplay between the concepts of epimorphisms, dominions and
amalgams. This will be done largely within the context of algebraic semi-
group theory, although the definitions and, indeed, even some of the the-
orems presented are equally at home in other algebras and other categories.

The concept of epimorphism is the element-free analogue of the notion
of surjective mapping. Let C be a category. A morphism a of .C is an
epimorphism (epi, for short) if whenever g and y are .morphisms of C such
that aff = ay, then B =y. An epimorphism is thus a pre-cancellative mor-
phism (or left cancellative if we compose maps, as I shall here, from left to
right). The dual concept of monomorphism applies to post-cancellative mor-
phisms and will not be discussed in this paper.

If C is a concrete category (meaning that its objects are sets, perhaps
with structure, and the morphisms are functions of these underlying sets), it
is obvious that any surjective morphism is epi. Indeed, to say that a: 4 =B
is epi is the same as saying that whenever 8, y: B — C are such that f|Aa
= y|Aa, then B = y. If this is the case, we say that Aa is dense in B or that
Aa is epimorphically embedded in B via the inclusion i: Aa — B. Observe that
the composition of epimorphisms is itself an epimorphism, while, as a partial
converse, if aff is epi, then f is epi. It follows from this that a: 4 — B is epi if
and only if the inclusion i: Aa =B is epi.

We then have a question: for a given category C, are the epimorphisms
just the surmorphisms, and if not, can the epis be characterized efféctively?
This question, which may seem artificial, has led to an astonishing amount of
interesting mathematics.

In the category of Sets, with morphisms the arbitrary set maps, the epis
are certainly just the surjections: for suppose a: A =B is not onto, take
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B, y: B — B with f the identity map, and y a map which is not the identity,
but whose restriction to Aa agrees with . Then aff = ay but B # y.

Epis are onto in the category of all Topological Spaces and continuous
maps. The argument is essentially the same as the Sets case. However, this
time we take B, y: B = C, where C = B as a set, and C is endowed with the
indiscrete topology (C and @ are the only open sets) to ensure that the maps
p and y are continuous, and hence are legitimate morphisms in the category
under consideration. Similarly, in the category Ab of all abelian groups and
abelian group homomorphisms, it is easy to show that if a: A = B is not
onto, then it is not epi. Take B, y: B — B/Aa to be the canonical and zero
homomorphisms, respectively. Once again aff = ay but f§ # .

In the category of Groups and their homomorphisms it is also the case
that epis are onto, although the argument used for Ab clearly fails, as in
general it is impossible to create the quotient group B/Aa, since Ax may not
be a normal subgroup of B. There is nevertheless a fairly short elementary
proof of this fact due to Linderholm [25], and [2] contains a proof of similar
theme, which shows that epis are onto in the category of all finite groups.
However, a group theorist might well answer both questions by stating that
this is an immediate corollary to Schreier’s Theorem that every (finite) group
amalgam can be strongly embedded in a (finite) group. Of this we shall have
more to say later.

Incidentally, using the fact that epis are onto for Groups, it is an. easy
exercise to show that the same is true for the category of all Topological
Groups, with morphisms the continuous homomorphisms (again the indis-
crete topology saves the day).

These examples may give the impression that there is no difference
between epimorphisms and surmorphisms in any category of interest. Let me
hasten to dispel this with several instances to the contrary.

Indeed, it is also the case that epis are onto in the category of all T,
Topological Spaces (see [2] which is the source of most of these introductory
examples). But in the category of all Hausdorff Topological Spaces, a: A =B
is epi if and only if Aa = B, i.e. if and only if the image of A under « is dense
in B. The proof of the necessity of this condition is in [2] and consists of
constructing two distinct continuous maps f and y which have domain B
and which agree on Aa (which is assumed to be not all of B) whose codomain
is another T,-space formed from two copies of the space B, amalgamating
Aa. However, 1 only prove the sufficiency in detail here as it furnishes our
first case of non-surjective epis. Suppose Aa = B and B, y: B — C are a pair
of continuous maps into a T,-space C, which agree on Aa. The result follows
from the general observation that a continuous mapping whose codomain is
a T,-space is determined by its action on a dense set. To see this, suppose
that b eB is such that bf # by. Take disjoint open neighbourhoods U and V
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about bp and by. Then UB~! n¥y~! is open in B, and since it contains at
least b, is not empty. Hence there exists xeUB ™! nVy~! N Aa. But then xB
= xy is simultaneously a member of both U and ¥V, a contradiction.
Therefore f|Aa = y| Ax implies f =7y if Aa = B.

The category of all Torsion-Free Abelian Groups has a peculiar charac-
terization of its epimorphisms: a: A —# B is epi if and only if B/4a is a
torsion group. For example, this states that the inclusion i: Z(+) = Q(+) is
an epi in this category, as clearly Q/Z is torsion (n(m/n+ Z) = Z). However,
this same mapping is not epi in Ab, as it is not onto. Of course, we cannot
use that Ab proof to show that i is not epi in the category of Torsion-Free
Abelian Groups, as the object Q/Z utilized in the argument is not a member
of the category.

To prove the assertion, suppose first that B/A4a« is torsion. Let b eB and
B, y: B = C be two morphisms whose restrictions to Aa agree. Since B/A« is
torsion, there exists n€Z™* such that nb e Ax, whence

(nb) B = (nb)y = n(b—by) = 0=bf = by,

as C is torsion-free. Hence « is epi if B/Aa is torsion.

Conversely, suppose that B’ = B/Aa is not torsion. Let T be the torsion
subgroup of B’ so that B’/T is a non-trivial torsion-free group.

Let k: B — B’ and k,: B’ = B’/T be the canonical homomorphisms, and
k,: B' = B'/T be the zero homomorphism. Put f = kk, and y = kk,. Then
B#7v but af =ay=0.

The categories of Rings and Scmigroups are outstanding examples of
categories with non-surjective epimosphisms. I say outstanding, as in each
case there is a so-called “Zigzag Thecrem” which, among other things, gives
very useful necessary and sufficient conditions for deciding whether or not a
given morphism is epi. Examples of non-surjective epimorphisms in each
category are common. ° :

Let us examine the inclusion i: Z(+, ©) = Q(+, *). We show that this is
an epimorphism in the category of all Rings and ring homomorphisms by
proving that any pair of ring homomorphisms f, y: Q — R which agree on Z
are in fact equal. We shall show that (1/n) = (1/n)y for all neZ\ {0}, from
which it follows easily that (m/n) B = (m/n)y for all m/ne Q. Now

(o= () e Che)
(- (e (=G

as required.
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The preceding example can be regarded as an epimorphic embedding in
the category of Semigroups by considering Q and Z as sets with purely
multiplicative structure. The inclusion i: (0, 1] —=(0, ), regarding both in-
tervals as multiplicative semigroups, is also an epimorphism [4]. A similar
argument to the previous example establishes this. However, here is an
example involving a creature of pure algebraic semigroup theory, the full
transformation semigroup [13]. Let S denote, the semigroup of all self-maps
on some infinite set X under function composition. For u €S denote the range
of u by Vu. Let U be the subsemigroup of S consisting of the identity map 1
together with {u€S: |X\Vu| = oo}. Clearly, U is a proper subsemigroup of
S. It is also epimorphically embedded. To see this let deS\U, so that vd
has a finite complement in X. Take u €U to be any injection apart from 1.
Define yeS by

n _{nu'l if nevu,
y= P otherwise,

where p is a fixed member of X. Observe that uy = 1. Now take a, f: S =T
to be any pair of homomorphisms from S to a semigroup T which agree on
U. Note that du e U because |Vdu| < |Vu|, whence | X \ Vdu| 2 | X \ Vu|, and the
latter is infinite. Hence (du)a = (du) B, and thus we may write

do =(d-1)a = dala = dalf = da(uy) p = daufyp
= douayp = (du)ayB = (du) ByB = (duy) p = (d-1) B = dB,

as required.

The very similar manipulations used in both our examples may at first
sight appear ad hoc, but are in fact typical instances of “zigzag” manipula-
tions in both categories.

2. Zigzags and amalgams. In what follows U will denote a subsemi-
group of a semigroup S.

Suppose that the inclusion i: U — S is epi, that is, U is dense in S. We
may think of U as a “large” or “dominating” part of S in the sense that the
action of any morphism from S is determined by its action on U.

However, in general it may be possible that U “dominates” some, but
not all, elements of S. Isbell [18] made this precise by defining the dominion
of U in S, denoted by Dom(U, S), to consist of all the elements d €S which
are dominated by U in the sense that whenever a, f: S = T are morphisms
such that a|U = B|U, then da = df. It is easy to see that Dom(U, §) is a
subsemigroup of S containing U. Indeed, it is routine to check that
Dom(-, S) is a closure operator on the subsemigroups of S in the sense that

U <Dom(U, S); if U <V <8, then
Dom(U, S) cDom(¥,S) and Dom(Dom(U, S), S) = Dom(U, S).
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We call a semigroup U closed in S if Dom(U,S)=U, and U is
absolutely closed if it is closed in every containing semigroup S. At the other
extreme, U is dense in S, or epimorphically embedded in S, if Dom(U, S) = S.
A weaker condition on U than that of being absolutely closed is that of
being saturated, which means that U cannot be properly epimorphically
embedded in another semigroup.

All these definitions, of course, can be applied equally well to other
algebras.

Two points to note: first, it follows from these definitions that to say
that every epi from a semigroup U is onto is equivalent to saying that every
morphic image of U is saturated (there exists a saturated semigroup with a
morphic image which is not! (see [12]); also it is not always true that a
subsemigroup U of S is dense in its own dominion, although it is inconvenient
to give .a counterexample here (see [13])).

We pause a moment from this barrage of definitions to give a somewhat
imprecise introduction to the concept of an amalgam.

A (semigroup) amalgam can be thought of as an indexed family
{S;; iel} of semigroups intersecting in a common subsemigroup U. In this
essay we shall only need to consider amalgams of the semigroups S and T
with a common core subsemigroup U, which we denote by [S, T; U]. The
amalgam [S, T; U] is then a partial semigroup: some products are meaning-
ful, and (xy)z = x(yz) provided both sides are defined. A natural general
question is whether or not the amalgam [S, T; U] can be embedded in
another semigroup W (ie., [S, T; U] € W and previously defined products
in the amalgam are unaltered). In 1927 Schreier showed that any group
amalgam is group embeddable, but this simple answer does not suffice for
semigroups.

I should mention that a proper definition of amalgam consists of disjoint
semigroups, equipped with -monomorphisms &; that embed the core U into
each of the S;. To then say that the amalgam is embedded in W means there
exist monos A: U = W, 4;: S; » W such that @, 4, = A for all i and S; 4, n S; 4;
= UJ for all i # j. However, in the description of the theory which follows, I
shall speak as if all these monos were inclusions, and not distinguish between
the domain and range of each of these inclusions. In other words, we think
of amalgams as introduced above. ‘

A natural candidate for a semigroup W into which the amalgam
[S, T; U] might be embedded is the so-called amalgamated free product of S
and T over U. This is constructed via the free product of § and T. To
introduce the latter concept it is best to think of § and T as disjoint
semigroups each containing a copy U, and U,, respectively, of U. We use
the notation u,, v,, etc. [u,, v,, etc.] to denote typical members of the copy
U, [U.].

The free product of S and T, denoted by S*T consists of finite
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sequences, or words, whose letters alternately come from S and T. The
product of two members w,, w, of S« T is defined by concatenation if the last
letter of w, and the first of w, do not come from the same semigroup,
otherwise w, w, is defined by first forming the concatenated word, and then
by performing the multiplication of the adjacent end letters in the semigroup
(S or T) of which they are both members. The amalgamated free product
S#*y, T of [S, T; U] is formed by partitioning S * T into equivalence classes:
w, is in the same class as w, if each word can be transformed into the other
by a finite sequence of transitions in which some letters from U, are replaced
by their counterparts in U, and vice versa (this allows the members of U to,
in effect, act equally as members of S or T). These equivalence classes can
now be properly multiplied by means of their representatives (i.e. this
partition is a congruence on S * T, and S »; T is a morphic image of S * 7).

Given two members of S * T it will in general be very difficult to decide
whether or not they represent the same member of S »; T. Also it is not clear
that [S, T; U] is embedded in S»; T.

Indeed, it has long been known that some semigroup amalgams cannot
be embedded in any semigroup. The first example, given by Kimura [24], is
as follows. Let U = {u, v, 0} be a three-element null semigroup (meaning
that all products equal 0). Extend the multiplication of U to one of §
= U u {s} by defining su = us = v and setting all other products equal to 0.
Similarly, extend the multiplication of U to one of T = U u {t} by defining
tv=vt =u, and setting all other products equal to 0. The amalgam
[S, T; U] cannot be found in any semigroup. For suppose that W were a
semigroup containing both S and T Then, in W, we have u = vt = sut = s0
= 0.

The importance of the amalgamated free product lies in the fact that if
[S, T; U] can be embedded in any semigroup, then it can be embedded in
S »y T. Indeed, any pair of distinct members of [S, T; U] which are identified
in the amalgamated free product will also be identified in any attempt to
embed [S, T; U] in another semigroup. The amalgamated free product
S*y T is the freest semigroup one can construct which respects all the
relations implicit in the amalgam [S, T; U]. Therefore, S*y T is the test
object used to study the nature of any collapse which must occur in the
amalgam [S, T; U] when it is embedded in another semigroup.

The amalgamated free product for groups, which has a similar construc-
tion, has found applications in the theory of group presentations by gener-
ators and relations. According to Magnus et al. this “eminently applicable
group-theoretical construction... arises in a natural manner from a topologi-
cal construction. If S, and S, are two arcwise connected spaces with
fundamental groups F,, F,, then a space S arising from S;, S, by identifying
appropriate non-empty homeomorphic subspaces S; and S, of S, and §,,
respectively, may have as a fundamental group the free product of F, and F,
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with an amalgamated subgroup which is the fundamental group of both S}
and S5”.

Semigroup' amalgams and their embeddability properties have come to
the forefront in algebraic semigroup theory largely through the work of
‘Howie and, more lately, Hall. Hall, in particular, predicts a large role will be
played by the amalgamation property in the theory of presentations of
inverse semigroups by generators and relations.

Although not every semigroup amalgam can be embedded in a semi-
group without collapse, there are some powerful positive results which
cannot be passed over. Those concerning epimorphisms and dominions will
be considered in some detail later, but the result of Hall, that every amalgam
of inverse semigroups can be embedded in an inverse semigroup without
collapse, is exceptional and calls for attention, as in particular it includes
Schreier’s Theorem for group amalgams as a special case.

A member a of a semigroup S is called regular if there exists an inverse
x for a in the Von Neumann sense that a = axa and x = xax. A semigroup is
called regular if all its members are regular. The prototype of a regular
semigroup is .7 x, the semigroup of all functions on a set X to itself under
composition. This so-called full transformation semigroup plays a role in
semigroup theory akin to that of the symmetric group in group theory: there
is a “Cayley Theorem” in that any semigroup S can be realized as a
subsemigroup of .7, (where S! is the semigroup S with identity 1 adjoined if

necessary). The embedding used mimics that employed in the Cayley The-
orem: i: s »p,, where g;: S' = S! is defined by xp, = xs (x€S!). The
presence of the identity in S! ensures that this embedding, called the right
regular representation of S, is faithful.

A regular semigroup S is an inverse semigroup if each member a €S has
a unique inverse a~!. It is not very difficult to prove that a regular
semigroup S is inverse if and only if the idempotents of S commute with each
other (whereupon if we define e A f = ef for any two idempotents of S, the
idempotents from a semilattice). Incidentally, the condition that the idempo-
tents of S are central is the characteristic property of semilattices of groups
(see [3] or [16]). The prototype of an inverse semigroup is the so-called
symmetric inverse semigroup .#x on a set X, which consists of all one-to-one
mappings whose domains and ranges are subsets of X (including the empty
map). The product of two members of .#y is the partial composition map
which results from composing them wherever possible. The “Cayley The-
orem” for inverse semigroups goes under the title of the Preston—Wagner
Theorem: any inverse semigroup can be embedded in .#, for some set X.
The proof is non-trivial (see [3]).

That inverse semigroups are a major area of modern semigroup theory
is attested to by the recent appearance of the monumental Inverse Semi-
groups by Petrich [27]. This book contains almost all work done on the
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subject up to the time of writing, and naturally includes Hall’s Theorem on
inverse semigroup amalgams. Schreier’s Theorem is a corollary: given a
group amalgam, Hall's Theorem allows it to be embedded in an inverse
semigroup, S say. It is then easy to verify that the subsemigroup of S
generated by the members of the amalgam is in fact a group, giving
Schreier’s result. In general, the embedding of a finite inverse semigroup
amalgam into its free inverse product with amalgamation does not preserve
finiteness (a counterexample, due to Ash, can be found in [16]). However,
recently Hall has characterized those finite inverse semigroups U which are
“strong amalgamation bases” in the category of all finite inverse semigroups
(meaning that any amalgam of finite inverse semigroups with core U is
embeddable in a finite inverse semigroup without collapse). From this result
Schreier’s Theorem for finite group amalgams is immediate. Hall’s Theorem
also tells us that inverse semigroups are absolutely closed in the category of
all inverse semigroups, although to justify this we must return to the relation-
ship between epis and amalgams.

Since semigroup amalgams can collapse when embedded in their free
product, it becomes important to distinguish the ways in which this collapse
can occur. We say that [S, T; U] is strongly embeddable if it can be
embedded in its free product without collapse. We say that [S, T; U] is
weakly embeddable if no two distinct members of S (and similarly of T) are
identified with each other in the free product S<; 7. Note that weak
embeddability does not preclude the possibility that a member s of S\ U is
identified with a member ¢t of T\U in W (see Fig. 1).

SeyT

strong
W
amalgam

[s, ;U]

weak
embedding

Fig. 1



EPIMORPHISMS AND AMALGAMS 9

Note that the Kimura example is not even weakly embeddable.

We say that a class of semigroups € has the strong [weak] amalgamation
property if every amalgam of members of € can be strongly [weakly]
embedded in some member of €.

By a special amalgam we mean an amalgam [S, §'; U], where there is an
isomorphism between S and S’ over U (meaning that U is fixed pointwise by
this mapping). We say that a class € has the special amalgamation property if
every special amalgam in.the class can be strongly embedded in another
member of ¥. The strong amalgamation property is equivalent to the
conjunction of the weak and special amalgamation properties. Let [S, T; U]
be an amalgam. By the weak amalgamation property there is a semigroup P
such that S, T< P and U =S N T. Consider a special amalgam [P, P’; U]
and invoke the special amalgam property to obtain a semigroup V such that
P, P =V and P~ P = U. But copies of S and T are then embedded in V in
such a way that S " T = U, as required. (This argument is universal alge-
braic in nature and a survey along these lines is to be found in [20])

Before proceeding to the connection between amalgams and dominions
we clarify the concept of an amalgamation base. Since the core of an
amalgam is the unifying object in the structure, it is natural to inquire if
there are any implications concerning embeddability which occur due to the
character of the core of an amalgam. A semigroup U is a weak [strong]
amalgamation base if every amalgam with core U is weakly [strongly]
embeddable in a semigroup. Howie in [15] proved that every inverse
semigroup is a strong amalgamation base. Another proof of this theorem can
be found in [7] along with the remarkable fact that every weak amalgama-
tion base is a strong amalgamation base. The proof is based on the
representation extension property: U has the representation extension proper-
ty in S if for any set X and any homomorphism g: U — J 4 there exist a set
Y, disjoint from X, and a homomorphism a: § = 9,y such that a,| X = g,
for all ueU. We then say that U has the representation extension property if
U has this property in every containing semigroup S. Hall proved that if U is
a weak amalgamation base, then U has the representation extension proper-
ty, which in turn implies that U is absolutely closed. Now, as we shall show,
the absolute closedness of U is equivalent to U being a special amalgamation
base (meaning that every special amalgam with core U is strongly embed-
dable), and, by the previous argument, the conjunction of the weak and
special amalgamation base properties implies that U is a strong amalgamation
base. We shall prove Hall’'s result at the end of the paper.

The connection between amalgams and dominions is via special amal-
gams. Let [S, §'; U] be a special amalgam with an isomorphism a: § =’
over U, and denote its free product with amalgamation by W. Obviously,
[S,S8'; U] is weakly embeddable in W, as the amalgam can be weakly.
embedded in S. At this point it is worth pausing to re-examine the Kimura
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amalgam [S, T: U] which is not weakly embeddable even though the semi-
groups § and T are isomorphic. There is no contradiction here as the
isomorphism between S and T is not over U, since the elements u and v of U
are interchanged under this mapping. The Kimura example is therefore not a

special amalgam.
Returning to our special amalgam [S, S’; U] we have §, S < W and

UcSnS'. Take deDom(U, S). Let f: S —S” be an isomorphism from S
to a third copy S” of S disjoint from W. Write U” and d” for UB and dp,
respectively. We may regard the homomorphisms

p~1: 8>S and B la: S-S
as homomorphisms from S” into W which agree on U”. It follows that
d=d"p~"' =@ p ™ )a

(since d”"eDom(U", §")); whence deSnS§ or, in other words,
Dom(U, S) =S nS".

Significantly, the converse inclusion holds. Denote the amalgam
[S,S; U] by A. Let a, B: S = T be two homomorphisms from S such that
a|U = B|U, and suppose that da # df (d €S). The amalgam

B = [Sa, SB; Sa N SP]

is embedded in T, and so we may without loss take T to be the free product
with amalgamation of B. There is then a surmorphism y: S*; S =T in
which sy = sa, s’y = s’ B (s €S, s’ €S’). The intuitive justification for this is the
fact that S *; S’ and T are the freest semigroups generated by the amalgams
A and B, respectively, which respect all the relations defined by the amal-
gams, and it is plain that the amalgam B induces all the relations of A (and
perhaps more) (for details see [16], Chapter VII). Since da # dpf, we have
d¢S NS in Sy S, and we conclude that Dom (U, S) is exactly the subsemi-
group of S consisting of all members which are identified with their counter-
parts in 8’ in Sx*; S’

Our epimorphism-related concepts can now be reworded in the language
of semigroup amalgams: U is absolutely closed means that U is a special
amalgamation base, U is dense in S means that S %y S’ is isomorphic to S.
What is more, theorems about amalgams can have corollaries for epis: every
inverse semigroup is an amalgamation base implies that inverse semigroups
are absolutely closed, every amalgam of inverse semigroups is strongly
embeddable in an inverse semigroup implies that inverse semigroups are
absolutely closed in the category of all inverse semigroups (neither of these
results is a corollary to the other).

However, this characterization of the dominion is equally valid in any
category of algebras where free products with amalgamation exist and share
the same universal properties. Hence it is asking too much to expect this
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theorem to enable us to recognize any epimorphism or, more generally, how
to decide whether or not a given d eDom(U, S). This perhaps tells us that d
will be dominated by U if d can be factorized in some special way in which
the elements of U play a central role. This is still far from the celebrated
Zigzag Theorem of Isbell.

ZiGzaG THEOREM FOR SEMIGROUPS. Let U be a subsemigroup of a
semigroup S. Then deDom(U, S) if and only if d€U or there is a series of
factorizations of d:

d=X1Up=X U Y1 = XU V1 = ... = XUt Y = U2 Vm
with
Up=Uy Yy, Xillgi—y = Xis1V2is UgiVi=Uzir1Viv1 (A <i<m-1),
XmUzm—1 = U (ui GU, Xis Vi ES)

Such a sequence of factorizations is called a zigzag in S over U with
value d, length m and spine the list uq, uy, ..., u,,.

For example, consider the epimorphic embedding i: (0, 1] —(0, o)
mentioned above. A zigzag for x > 1 is given by

x=x1 = Xio,
/:—l-\ —
x:x "' x = xihy y,
1-x = ‘72}’,

where the braces denote zigzag equalities. Length-one zigzags suffice here,
but this is not always so (see, e.g., [13]).

In one direction the proof of Isbell’s Theorem is easy: given a zigzag Z
for d it is routine to verify that if a, f: S - T are homomorphisms which
agree on U, then da =dp. The argument is just a generalization of the
manipulations used in our example at the close of the first section. The
converse is obviously difficult, for how is one to extract a zigzag from the
condition that deDom(U, S)\U? The first proof by Isbell [18] was
topological in nature and was incomplete. The proof was made rigorous by
Philip [28]. An algebraic proof was given by Storrer [31] and is based on
work by Stenstrom [30]. Howie’s book [16] contains a proof along these
lines. It is similar in idea to proofs of Zigzag Theorems for Rings and Unital
Rings which also rely on tensor product ideas [29]. Recently, a different
proof of Isbell’s Theorem has been shown to the author by D. Jackson. This
proof is remarkable in that it uses the method of “regular diagrams” which
is “closely related to the geometric methods of Lyndon and Schupp in
combinatorial group theory”. Jackson also uses an HNN construction, first
developed in a semigroup context by Howie [14]. The HNN construction
seems to fill the role played by the tensor product in Storrer’s proof. Both
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proofs are similar in that they proceed to the Zigzag Theorem for Semi-
groups via the corresponding theorem for Monoids (semigroups with ident-
ity).

One might hope to prove the Zigzag Theorem by a grappling directly
with S »; S’, but no one has as yet succeeded. However, this can be done in
the category of Commutative Semigroups. First, note that the Zigzag Theo-
rem for Commutative Semigroups is not a corollary to the Zigzag Theorem
for Semigroups: it is conceivable that there exists d €S\ U which is domi-
nated by U with respect to all pairs of morphisms from § into a commutative
semigroup 7, but there exist a, f: S =V, V not commutative, such that
a|U = B|U but da # df. Indeed, whether or not zigzags fully describe
dominions in the category of Bands (semigroups of idempotents) is still an
open question, made more interesting by the discovery by Hall [8] of infi-
nitely many varieties of semigroups in which the Zigzag Theorem does not
hold. (P 1350)

The proof of the Zigzag Theorem for the category of Commutative
Semigroups, taken from [17], begins by noting that the free product S = T of
two commutative semigroups can be regarded as the direct product
SW x T with the identity (1, 1) removed (S'" means S with an adjoined
identity, whether or not it already has one). Now, if d eDom(U, S), there is a
sequence of transitions (1, d) —... = (d, 1), where a typical transition (x, y)
—(z, t) is either

an r-step, (x, ) = (p, @), V(. 9), (2, ) = (p, D (1, W(r, 9),
or
an l-Sth, (x’ y) = (p9 q)(la u)('a S)9 (Z, t) = (p’ q)(u, 1)("’ S),

where ueU, p, q, r, s€SV. By commutativity we have x = zu and uy =t in
case of an r-step; and z =ux and y = ut if it is an [-step. Obviously, two
successive r-steps (corresponding to u and /', respectively) can be abbreviated
to a single r-step (corresponding to u'u); a dual remark applies to I-steps.
Hence we may assume that r- and I-steps occur alternately in-the sequence.
Since the adjoined identity 1 has no divisors in U, the first and last members
of the sequence are I-steps. Therefore, there is an odd number (say 2m+ 1) of
steps, the corresponding factorizations being necessarily of the form

d = x, u, Ug = Uy Y1,
Xy Uy = XUy, Uy = Uz )y,
xm—l u2m—3 = Xm “zm—z, u2m—2ym-l = u2m—l ynu

XmUom—1 = U2m, Usm Ym = d



EPIMORPHISMS AND AMALGAMS 13

with each u;eU. This completes the proof of the Zigzag Theorem for
Commutative Semigroups.

It is noteworthy that neither Storrer’s. nor Jackson’s proof of the Zigzag
Theorem for Semigroups seems to be adaptable to the category of Commuta-
tive Semigroups.

In passing we state the Zigzag Theorem for the category of Rings. Let R
be a subring of a ring S. Then deDom(R, S) if and only if d = a+ XPY,
where aeR, X is a row vector over S, Y a column vector over S, P a matrix
over R! such that both XP and PY are matrices over R. For the category of
Rings with Unity (homomorphisms must preserve the identity) a similar
Zigzag Theorem holds but there is the simplification that the element a can
be taken to be zero (see [29]).

3. Some applications. The efficacy of zigzag theorems is demonstrated
through four examples.

Since epimorphisms are akin to surmorphisms, they might be expected
to have structure-preserving qualities. Bulaszewska and Krempa [1] proved
that the epimorphic image of a commutative ring is commutative. The
corresponding theorem for Semigroups is an easy consequence of the Zigzag
Theorem.

TueoreM (Isbell [18]). Let a: U — S be an epimorphism from a commuta-
tive semigroup U to a semigroup S. Then S is commutative.

Proof. Consider the epimorphic inclusion i: Ua =»S. Let ueUa,
deS\Ua, and let Z be a zigzag in S over Ua with value d, as in the Zigzag
Theorem. Then Ua is commutative and

du = Xy Uugu = Xy Ulg = X Ul Yy = X Uy UYy = XU UYy = ...
F XUz 1 Y = XmUom—1 UWm = U UYm = Ul Ym = ud.
Hence Ua is central in S. It remains to show that any two members
d, teS\U commute. However, since ¢t commutes with all members of the
spine of the zigzag for d, we can repeat the above argument to prove that dt
= td, as required.

The above proof in fact shows that the dominion of a commutative
semigroup is itself commutative.

N. M. Khan has generalized the preceding theorem in two directions by
showing that any equational class of commutative semigroups is closed
under the taking of epis [22] and that every permutation identity is respected
by epimorphisms [23].

A semigroup S is right [left] simple if aS =S [Sa = S] for all a€S.
A global definition of a group, often utilized in semigroup theory, is that of
a semigroup which is both left and right simple. One might therefore expect
right simple semigroups to resemble groups. The classical result along these
lines is that the following are equivalent:
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(1) S 1s right simple and left cancellative;

(ii) S is right simple with at least one idempotent;

(111) S is isomorphic to G xR, where G is a group and R is a right zero
semigroup (meaning that xy =y for all x, y€eR).

This characterization of these semigroups, known as right groups, is given
in Clifford and Preston Vol. I [3]. Right simple idempotent-free semigroups
exist, and the standard example is the Baer—Levi semigroup, which is the
subsemigroup of .7y, with X infinite and countable, consisting of all injec-
tions whose ranges have infinite complements in X. It is elementary to
check that the Baer—Levi semigroup is right simple, right cancellative with no
idempotent.

However, all right simple semigroups enjoy the property of being special
amalgam bases. The proof of this begins with the observation that two
zigzags Z and Z' in S over U with the same spine are equivalent in the sense
that they have the same value. Call their respective values d and d’. Let Z be
of the form given in the Zigzag Theorem and Z’' be defined by

’
d=tiuyg=1tiuUjzy =t U2y =... = tyyUsm—12Zm = UsmZm-
We obtain
’
d=x1 uo =x1 ulzl =x2uzzl =x2u322 =...=xmu2m_lzm=u2mzm=d.

THeoreM (Howie and Isbell [17]). A right simple semigroup U is abso-
lutely closed.

Proof. Suppose that U is contained in a semigroup S. The result is
proved by showing that a given zigzag Z in S over U is equivalent to a
zigzag Z':

XiUg = Xq U Vg = XU 0y = XU Uy = ... = Uy Uy,

with v,, v,, ..., v, €U. The common value of both zigzags is then u,, v, €U,
whence U is closed in S.

Now, the right simplicity of U means exactly that there exists a solution
in U to any equation of the form ax = b (a, b €U). In particular, there exists
v, €U such that uy = u,v,, and then we can find v, €U such that u,v,
= u, v,, and so on, producing the required list of elements v,, v,, ..., v, €U.

Next, we give a quick application of the Zigzag Theorem for Rings with
Unity due to Gardner [5]. A ring R is regular if its multiplicative semigroup
is regular. The class of regular rings includes all division rings and the ring
M, (R) of all (n x n)-matrices over a regular unital ring is itself regular [21].

THeoreM (Gardner [5]). Let a: R — S be an epimorphism from a regular
unital ring R to a unital ring S in the category of Rings with Unity. Then
R =S.

Proof. Since the morphic image of a regular ring is clearly regular, and
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the inclusion i: Ra — S is a dense embedding, we can assume without loss
that « is an embedding. Take s €S, which by the Zigzag Theorem for Unital
Rings has the form XPY, where XPY is a (ring) zigzag. By inserting rows or
columns of zeros if necessary, we may assume that P is a square, n xn say,
matrix. By the above comment, P is itself regular, and so P = PTP, where T
is a matrix over R. But then

s = XPY =(XP) T(PY)€R,

as XP and PY are matrices over R. Therefore R = S.

This neat proof belies the difficulty of extracting the corresponding
result for the category of all Rings [5]. However, the same result for
semigroups is false. Indeed, there exists a semigroup consisting entirely of
idempotents which can be properly densely embedded in another semigroup
[10]. However, any epimorphism from a finite regular semigroup is onto in
the category of Semigroups (see [9] or [11]).

Our final application is the promised proof of Hall’s Theorem [7].

THEOREM. Any semigroup U which is a weak amalgamation base is a
strong amalgamation base.

This result contrasts with the category of Distributive Lattices where all
objects are weak amalgamation bases, but not all have the strong amalgama-
tion base property [6].

Proof. It suffices to prove that if U is not absolutely closed, then it is
not a weak amalgamation base, because the strong amalgamation base
property is the conjunction of the weak and special amalgamation base
properties. To this end suppose that S contains U as a subsemigroup with Z
a zigzag in S over U with value deS\U. Let X be a special amalgam
[S’, $”; U] considered as a set (S', S” copies of S). Without loss we suppose
that S = S'. Define a map ¢: U —».7y whereby u —¢,, where s'g, = s'u,
s"0,=5"u (seS’, s"€S"). Clearly, ¢ is an isomorphism into .7 . Let T be
the subsemigroup of .7y consisting of Ug together with the constant maps,
and consider the amalgamated free product S x; T. Denote the two distinct
members of X corresponding to d by d' and d”. Use single and double
primes to denote members of S§’ and S”, respectively. In the following
calculation we write x}, x5, etc. to represent the members of §’, and x}, X3,
etc. to represent the corresponding constant maps. Bearing in mind that u
and g, are identified in S*y; T we have

d' = (xyu0) = X Qug = XyUp = Xy Uy Yy = X1 Qu, Y1 = (x1y)y; = (x343) ¥,
= )—C'ZQuzyl = XUy =XaU3Y2 = ... = X Quyp_y Vm = (XmUz2m=1) Ym

= i‘.Zmynv
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However, by symmetry, we also get d’ = ii,,, y,,. In other words, d' = d"” in
S »y T, showing that the amalgam [S, T; U] is not weakly embeddable, as
required.
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