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1. Introduction and preliminaries. In this paper*, (X, .o/, m) and
(Y, 4, n) stand for o-finite measure spaces. For 1 < p < oo we denote by
I?(m) = IP(X, o/, m) the Banach lattice of all p-integrable real-valued
functions on X with the standard norm ||-||, (also written as ||-|| when no
confusion can arise) and order. In the case X = [0, 1], where ./ is the o-
algebra of Lebesgue measurable sets and m = A (the Lebesgue measure on
«f), we write briefly [ instead of L”(m).

By #(L*(m), L'(n)) we denote the Banach space of all bounded linear
operators from L*(m) into L’ (n) and by £, (L?(m), L (n)) its subset consisting
of all positive operators, ie, Te %, (LP(m), L(n) if and only if 7 >0
whenever f > 0.

Given an operator Te & (L?(m), L' (n)), we define its isometric domain as

M(T) = {feLP(m): ITFIl =ITIIAI}-

Thus, for f e L’(m) with f # 0, we have fe M(T) if and only if T attains its
norm at f. Moreover, if M(T) # {0}, then T is said to be norm attaining. It
follows from a result of Lindenstrauss ([7], Theorem 1) that the set of norm
attaining operators is norm dense in .#(L?(m), L’ (n)). On the other hand, not
every (positive) operator is norm attaining, e.g., T e ¥ (Lf) defined by (Tf)(x)
= xf (x).

The main result of the present paper asserts that M (T) is a closed linear
sublattice of I?(m) for every Te &, (L*(m), L?(n)) (Theorem 2 in Section 2).
This is no more true, in general, if p # r (Proposition 2 in Section 3). In this
connection we introduce in Section 4 the class of elementary operators for
which the assertion of Theorem 2 still holds if r < p (Theorem 4). It is
worthwhile to mention that the proof of Theorem 2 consists in a reduction
to the case where X =Y=[0,1], m=n= A4 and T is doubly stochastic.
This case is settled with the help of some results of Ryff [11], [12].

* This paper is based on a part of the author’s doctoral thesis written under the
supervision of Professor Anzelm Iwanik.
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In the sequel of this section we introduce some more notation and
establish a number of auxiliary results. We define the support of feL?(m),
denoted by suppf, to be the set {x: f(x)# 0}. We write f1g provided
f, ge [P(m) are orthogonal, that is, have disjoint supports.

() Let fel’(m), gel’(m), and let TeZL,(LF(m),L(n) If
suppg < suppf, then supp Ty < supp 7.

Indeed, we have |g| A nf1|gl, and so T(|g| A nf)1 T|g|. Hence

supp Ty <= supp Tlgl = U supp T(lg| A #f) = supp .

Lemma 1. Let p<r, TeZL.(’(m),L(n), and let feM(T). If

Ji,[2€P(m), fy Lf;, and T, L T,, then f,, f,e M(T). If, in addition, T # 0
and p<r, then f; =0 or f, =0.

Proof. We may and do assume that ||T)| =1 and ||f|| = 1. Then
=171 = ITHIF+HITRIE < WTHIF+HITRIP = AR+ = 1.

Hence
(1) WTll; = T = Al for i=1, 2.
If Te £, (IP(m), L(n)) and fe M(T), then
() |fle M(T),
(3 I =TIfl, T.L17-,
(T+ =T+, (TN-=T-,
4) fo,f-eM(T) if p<r.

Indeed, (2)'.! and the first equality of (3) follow from the inequality
|| < T|f]. Since

1T + T-ll = | TIA| = TN = 1T+ — T-II,

we have Tf, L Tf_. It follows that (Tf), =(Tf, — Tf-), = Tf,. Finally, (4) is
a consequence of Lemma 1 and (3).

We use the well-known identification of the conjugate space [LP(m)]*
with I (m), where 1/p’+ 1/p = 1, by the formula {f, h) = [fhdm for f € I* (m)
and he ¥ (m).

For feIf(m) we put

SP7Hx) = If ()P~ ! signf ().

We have ||f?7 1|2 = {f, fP~ !> =|IfII5. It follows that f?~'eL” (m) and the

corresponding functional attains its norm at f. ,
Consequently, if Te £ (L?(m), L (n)) attains its norm at f and || T|| = ||f]|

=1, then 1=(T,g" )=, T*¢g""!), where g = Tf. From the strict
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convexity of LP (m) we get T*g"~! = fP~!  that is,

5) (Y~ ' =f"""
By a similar argument and (3), for T > 0 we have
(6) T* T~ =P

Further, for Ae o/ we define an operator I, on [’(m) by the formula
L,f =1,f.

LEmMMA 2. Let fel’,(m) and Te %, (LP(m), L(n) be such that
supp T*(Tf)"~ ! < suppf. Then

T= IsuPp TS Tlsuppf+ I(supp Tf)c Tl(supp fe:
In particular, g 1 f implies Tg L Tf for every g e L*(m).

Proof. Put A =suppf and B =supp7f. We have to show that the
operators Ty = I . TI, and T = I3 TI . equal 0. Since, by (*), supp TI,g < B
for every geL*, (m), the first assertion follows.

We show that TF=1IT*Iz=0. Fix helL,(n. We have
supp 13 h < supp(7f)"~'. Hence, by assumption and (x), supp T*Igh c A.
Thus T*h = 0.

Lemma 2 yields, in view of (2) and (5), the following:

(x#) If Te £, (LP(m), L (n)), then g Lf implies Ty L Tf for every f e M(T)
and ge Lf(m).

Finally, for an operator Te ¥ (L?(m), L'(n)) we put

J(T) = {suppf: fe M(T)}.

Lemma 3. Let Te &, (IP(m), L?(n). If AecJ(T) and f e M(T), then 1,f,
1, fSeM(T)

Proof. Choose ueM(T) with suppu=A. By (*x) and (2),
T(1,.f) L T|ul. Hence, by (), we have T(1,f) LT(1,1f1). This yields
T1,.f) L T(1,f), which, together with Lemma 1, implies the assertion.

2. The case p =r. We start with the following

TueoreM 1. If Te &, (LP(m), LP(n)), then J(T) is a o-ring of sets.

Proof. We may and do assume that ||T|| = 1. It is sufficient to show
that J(T) is closed under differences and countable disjoint unions. If
f,ueM(T), then by Lemma 3 we have l(suppu),fe M(T), and so
(suppf)\(suppuw)eJ(T). Now, let A,eJ(T) be pairwise disjoint and let

f,eM(T) be such that ||f,|l =1 and suppf, = A,. By (*»), supp Tf, are
pairwise disjoint. Putting

7=3 2,

6 — Colloquium Mathematicum 52.2



254 R. GRZASLEWICZ

we have
suppf = U 4, and |ITl= Y 27"ITIP=1=|fl.
n=1 n=1

Remark 1. If Te &, (IP(m), L (n)), then the o-rings J(T) and J(T*) are
isomorpkic.

Indeed, assume that ||T])| =1 and put ¢ (suppf) = supp %f for fe M(T).
By (»), (2) and (3), ¢ is well defined. Assume that ||f|| = 1. Since supp I/
= supp(7F)*~, it follows from (5) that ¢ (suppf)e M (T*). Arguing as in the
proof of Theorem 1, we can show that if A,eJ(T) are pairwise disjoint, then

so are ¢(A,) and ¢(C} A,) = C) ¢(A4,). Hence
n=1 n=1

¢(AUB) =¢(A\B)up(ANB)LU$(B\A) = p(4) L ¢(B),
¢(A\B) = ¢ (A)\¢(Bn A) = p(A)\(¢(Bn AU S(B\A) = $(4)\¢(B).

It follows that ¢ is a 6-homomorphism.
To show that ¢ maps J(T) onto J(T*), fix ge M(T*) with ||g|| = 1.
Since, by (5), T(T*g)*"! =g?~!, we have

(T*g)*"'eM(T) and @(supp(T*g)*~') =suppg.
Finally, if supp Tf = @ and f e M(T), then suppf = Q. It follows that ¢
is a one-to-one mapping.
In the sequel of this section we shall need some notation and results of
Ryff [11], [12] which we now recall.

For a measurable function f: [0, 1] — R we define a function f*: [0, 1]
— R by

f*(x) =sup {y: A({z: f(2) > y}) > x}.

The function f* is non-increasing, right-continuous and has the same
distribution as f. We have ||f||, = ||f*|l, for every feL”. It is also easy to see
that (f+1)* =f*+1.

Ryff introduced in [11] a partial ordering < for functions f, ge L' by
defining g <f whenever

jg*dls jf*dl for 0<s <1
0 0
and
1 1
jg*d}.=jf"‘d}..
] 0

An operator Pe %, (L) is said to be doubly stochastic provided P1 = 1
and P*1=1. An operator Te Z(L') is doubly stochastic if and only if
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Tr <f for every feL' ([11], p. 1384-1385). Moreover, for f, ge L' we have
g <f if and only if there exists a doubly stochastic operator Pe .#(L') such
that g = Pf ([12], Theorem 3).

Lemma 4. Let f,ge’. If g <f, then |igll, <||fll,- If, moreover, |igll,
=|Ifll,, then g* =f*.

Proof. Let P be a doubly stochastic operator such that g = Pf. Now,
the first assertion follows from the fact that P when restricted to L” is a
contraction into I? (M. Riesz Theorem; see [13], V.8.2).

Since g** =g* and f** =f* we have

g*+f* I
I < L/l
P

llg*ll, <

If |lgll, = lIfll,, it follows from the strict convexity of LP that g* = f*.
LEMMA 5. Let oL’ and let P be a doubly stochastic operator. If || Po||,
= ||@ll,, then ||[Po+1|l, = llo+1||,.
Proof. By Lemma 4, we have (Pp)* = ¢*. Hence (Po+ 1)* = (p+1)*,
and so

IPe+ 1|, = (Po+1)*|l, = ll(e+ D*ll, = llo+1ll,.

We note that since the results of Ryff used above are valid for an
arbitrary finite measure space (see, e.g., [9], Theorems 1 and 3), Lemmas 4
and S are also valid in that setting. However, this generality is not needed for
our purposes.

LEmMMA 6. If Te Z, (L?) and f, ue M(T), then f+ueM(T).

Proof. We may and do assume that ||T|| = 1.

We first prove the assertion under the assumption that suppu < suppf
and f > 0. We also assume, without loss of generality, that ||f]| = 1.

Let 7: [0, 1] — [0, 1] be a Borel isomorphism such that

MO = [ Ifda
1)
for every Borel set C = [0, 1] (see [14], 4.1 (i); cf. also [10], Chapter 15,
Theorem 9). Putting Uh(x) = f (x) h(z(x)), we define a positive [P-isometry U
such that U (L) = {ke”: suppk < suppf} and Ul =f (cf. [10], Chapter 15,
Theorem 16).

Put g = Tf. By a similar argument, there exists a positive [P-isometry V
of {keL”: suppk — suppg} onto I? such that Vg = 1. Since, in view of (),
supp TUh < suppg for he L?, we may define an operator P by the formula P
= VTU. Clearly, P> 0 and P1 = 1. Moreover, applying (5) three times, we
get

P*1=U*T*V*1 =U*T*g* ' = U*f*~ 1 =1.
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It fellows that P can be (uniquely) extended to a doubly stochastic operator
on L!, which we still denote by P.

Put ¢ = U~ 'u. We have ||Po|| = ||V Tu|| = ||Till = ||lull = l|l¢|l. Hence, by
Lemma 5, ||[Po+1|| =]|l¢+1|. On the other hand,

lo+ 1l =IU(e+ DIl = llu+fl,
IPo+ 11l = IVT @+l =T @+

It follows that f+ue M(T).

In the general case put A =suppf, and B =suppf.. By (4) we have
f+, f~eM(T). Hence Lemma 3 yields 1,u, 1zue M(T). Consequently,
f++1,ueM(T) and f_—1zue M(T). Hence, by (**) we conclude that
T(f++1,u) L T(f- —15u). Therefore

IT(f+uwll” =
NT(f+ +1LalIP+IT (- = 1pwll” = Ifs + 14ullP+]f- — 1 ull® = || f+ull”.

THeoreM 2. If Te %, (IP(m), IP(n)), then M(T) is a closed linear
sublattice of LF(m).

Proof. Clearly, M(T) is closed. By (2), if fe M(T), then |f|e M(T).
Obviously, af e M(T) for acR. Thus it is sufficient to show that if
f,ue M(T), then f+ue M(T).

Assume, without loss of generality, that ||T]| = 1. Denote by </ the
smallest o-algebra with respect to which f and u are measurable and put i
= m| . Then I*(fi) is separable, and so there exists a g-subalgebra # of %
such that I?(7) is separable and T(L?(f)) < [P(A) with /i = n|%. By a well-
known theorem there exist positive isometries S,: [P(i7)— L* and S;:
L7 (i) — [P, where 1/p+1/p'=1 (cf. [10], Chapter 15, Theorem 2). Then
T, = S, TS% is a positive contraction. Put

F=S;(f"" "' and @=S,@ YL
By (5), S%f =f and S%ii = u, whence f, #e M(T;). Therefore, by Lemma 6,
IT(f+uwll = IS, T(f+wll = I To(f+Dll = IF+il = 1S3 F+DIl = [If+ull.

Remark 2. In view of Theorem 2, M(T) 1s a Banach lattice. Moreover,
by (3), T|f| = |Tf| for f e M(T). 1t follows that T, when restricted to M (T), is
a Banach-lattice isomorphism into I?(n) provided T # 0.

Recall that a finite measure m on & is said to be perfect provided for
every measurable function f: X — R and H < R such that f ! (H)e o/ there
exists a Borel set C = H such that m(f~'(C)) = m(f ~ ' (H)) (see [8] for other
equivalent conditions).

The following corollary is closely related to recent results of Deland and
Shiflett ([3], Corollary 3), and Hardin ([5], Corollary 4.3):
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COROLLARY. Let m be perfect and assume that Te %, (LP(m)) has the
norm 1. If 1, f e M(T) with f being a one-to-one function, then T is an isometry.
If, moreover, T1 =1 and Tf =f, then T is the identity operator.

Proof. Let K be the closed linear sublattice of L?(m) generated by 1
and f. By [13], Proposition III.11.2 (cf. also [6], Proposition), there exists a
o-subalgebra &/’ of &/ such that

K ={fel?(m): f is o/'-measurable}.

On the other hand, since m is perfect and f is one-to-one, for every Ae .o/
there exists a Borel set C < R such that m(AAf~!(C)) = 0. From Theorem 2
it follows that K = I[?(m). In particular, M(T) = L[(m), and so T is an
isometry. The second part of the assertion is now a consequence of Re-
mark 2.

Remark 3. As was pointed out by Professor F. Altomate, under the
hypotheses of the Corollary, if 1, fe M(T) and f is one-to-one, then {1, f} is
a Korovkin system in IP(m) with respect to sequences of positive
contractions (i.e., for every sequence (L,),.n Of positive contractions on L?(m)
such that lim L,(h) =h for all he{l,f}, we have lim L,(g) =g for all

n-—w n—aw
ge L (m)).

In fact, as showed previously, the closed linear sublattice of LP(m)
generated by {1, '} coincides with L?(m), which implies (in fact, is equivalent
to) that {1, f} is a Korovkin system for positive contractions because of a
result of Berens and Lorentz (see [1], p. 27, and [2], Theorem 2).

3. The case p # r. For Te &, (L?(m), L?(n)) we define the support of T,
denoted by supp T, to be the smallest set Ae.o/ (modulo m-null sets) such
that TI, = T. The existence of supp T follows from the o-finiteness of m.

As easily seen from (*), felf. (m) and Tf =0 imply

(suppf) n(supp T) = Q.

ProposiTION 1. Let 1 <r<p<o and let Te¥,(LP(m), L(n). If
T*(TfY "' =f?""' for a certain function feL’, (m) such that ||f||,=1 and
suppf =supp T, then ||T|| = 1.

Proof. We have

1=, TX(TfY ™) = KTATf Y1) = TSI,

whence ||T]| = 1.
To prove the other inequality, consider ge I’(m) of the form

k
g= ) cluf+gi,

i=1
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where c;e R, {A4;}%_, is a measurable partition of suppf and g, Lf. We have

T(14)
1T =Tl = (1Y [E ==
T(1,, /) L
< (Tf)'z—Tlc,-l' =(Tf) T(z lcil” lA,-f)'

Hence, by assumption,
Nl < J(TA) " TR leil 14,1 )dn
= JElel Lo f) T*(TfY ™" dm = [Y el 14, f7dm < [lgl"f*~" dm.
Since the functions g defined above form a dense subset of L[”(m), we have

ITgllF < [lgl"fP~"dm for all geLP(m). In the case p =r, this immediately
implies ||T]| < 1. In the case p > r, we apply, moreover, the estimate

(7 flgl"fP="dm < [ (gl dm] [ [(fP~") ?*~" dm]P~"/P = ||g|I},
which is a consequence of Holder’s inequality.

THEOREM 3. Let 1 <r<p<oc and let Te ¥, (LP(m), L(n). Then
J(T) < {@, supp T} and there exists at most one positive function f with norm
1 in M(T). Moreover, if ge M(T), then |g| = c¢f, where ¢ is a non-negative
number.

Proof. Assume, without loss of generality, that ||T]| = 1. Let AeJ(T)
and m(A) > 0. Then, by (2), there exists fe M(T) with norm 1 such that f
2 0 and suppf = A. We claim that if he LP(m), ||hll, = 1, and h Lf, then Th

= 0. Indeed, we have ||Tf+aTh]|, <||f+ah|,. Since, by (xx), Th L Tf, we
obtain

1+a"||Th|; < (1+a®)'>.
Hence

(1+a?)y'P—1

A

which yields ||Th||, =0 when a |0. Thus we have proved that supp T = A.
To prove the second assertion take ge M(T). Then in (7) we have the

equality. Hence there exists ce R, with |g| = ¢f ([10], Chapter 6, Theorem 2).
The following simple example contrasts with Theorems 2 and 3. It

shows that if 1 < p <r, then M(T) need not be a linear space nor have any
of the properties asserted in Theorem 3.

Example. Let Ie #(I5, I5) be the identity operator. If p <r, then ||I||
=1 and

ITHI; <

M() = {(a, 0), (0, 2): xeR].
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Our next result shows that Theorem 2 cannot be generalized in a certain
direction (see [4] for another result of the same type).

ProPOSITION 2. Suppose that 1 <p <o, 1 <r < oo, and assume that
Te L., (LP(m), L(n)) and dimlin M(T) > 2. Then M(T) is a linear subspace
of [?(m) if and only if p=r.

Proof. The “if” part follows from Theorem 2.

Suppose r < p. Then it follows from Theorem 3 that there exist two
linearly independent functions f;, f,e M(T) such that |f;| =|f3]. Then
O # supp(f, +/>) # supp . Hence, by Theorem 3, f,+f,¢M(T), and so
M(T) is not a linear space.

Suppose r > p. Observe that if fe M (T), then f > 0 or £ < 0. Indeed, by
(3), Tf, L Tf_. Hence, in virtue of Lemma 1, f_ =0 or f, =0. Now, if
fi,f2€ M(T) are linearly independent, there exists € R such that (f; +af3).
# 0 and (f; +af3)- # 0. Consequently, f, +af, ¢ M(T), and so M(T) is not
a linear space.

4. The case of an elementary operator. We say that an operator
Te #.(LP(m), L (n)) is elementary provided there are no non-zero operators
T,, ,e %, (P(m), L (n) such that T=T,+ T, and

(supp T;) N (supp T;) = (supp T;*) N (supp T3*) = Q.

THEOREM 4. Let 1 <r<p<o and let TeZ,(L’(m), L'(n) be an
elementary operator. Then M(T) is a linear sublattice of LP(m) with
dim M(T) < 1. Moreover, if fe M(T) and f # 0, then suppf =supp T.

Proof. Case r < p. Suppose that there exist two linearly independent
functions in M (T). Then it follows from Theorem 3 that there is an fe M(T)
such that f, # 0 and f_ # 0. Moreover, suppf =supp T. By (3), supp T/,
and supp Tf_ are disjoint. From (*) we obtain

l(supp Tf+)° TIsuppf+ = O and ](supp TS )® TIsuppf_ = 0.
Since supp T = (suppf.) U (suppf-), we get
T=1I,r,, Tlsuwf-c- +lors_ Tl s_-

Hence T is non-elementary, a contradiction. The second assertion follows
from Theorem 3.

Case r=p. We start with the second assertion. As easily seen,
suppf csuppT. Suppose, to get a contradiction, that the set A
= (supp T)\(suppf) has a positive m-measure. We may and do assume that
T =]Ifll=1 and f >0 (see (2)). Put

Ty = lupors Thupy and  To=I . TI ..

Then T, #0 since T,f = Tf #0, and T, # 0 since m(A4) > 0. Moreover, by
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(») and (*x), T =T,+T,, which contradicts the assumption that T is
elementary.

Suppose now that dimM(T)>2 and let f,geM(T) be linearly
independent. Then there exists ae R such that (f+ag), # 0 and (f+ag)- # 0.
As, by Theorem 2, (f+ag), e M(T) and (f+ag)- e M(T), we have obtained a
contradiction with the second assertion of the theorem.

Remark 4. If Te &, (L?(m), L?(n)) and A is an atom of the a-ring J(T),
then TI, is an elementary operator.

Indeed, suppose on the contrary that TI, = T, + T,,"where T, = I Ty
and T, =1.TI, are non-=zero. This implies that m(4AnB)>0 and

m(A N B°) > 0. Choose fe M(T) with suppf = A. Then, by Lemma 1, we
obtain 1,.5feM(T) and 1, ..feM(T), and so AnBeJ(T) and

AN B°eJ(T). Hence A is not an atom of J(T).
Remark 5. Let Te %, (LP(m), ’(n)) be such that supp TeJ(T) and

J(T) is purely atomic. Let A,, A,,... be all atoms of J(T). As easily seen,
(T1,)* have disjoint supports. Hence for every geM(T) we have

1,,9e M(TI,). Fix fe M(T) with f > 0 and suppf = supp T. From Remark
4 and Theorem 4 it follows that 1,,g = 4; 1, f for some g;e R. As, moreover,
suppg < suppf, we infer that

M(T) = {Y a1,/ Tlallll,fll} < o).

Thus M(T) is isometric and order isomorphic to I? or I according as the set
of atoms of J(T) is infinite or has the cardinality n.

Added in proof. For a related result see the author, A characterization of
[P-spaces in terms of positive operators, Bulletin of the Polish Academy of
Sciences, Mathematics, 33 (1985), p. 377-379.
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