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The present paper is a continuation of author’s work [4], joint with
Plachky and Thomsen. Nevertheless, its first section can be read inde-
pendently of [4] and the other two depend only on Theorem 3 from [4].
The latter result is repeated at the beginning of Section 2.

In Section 1 we improve upon a classical theorem of L. V. Kantorovié¢
concerning extension of positive operators on ordered vector spaces.
Our main result (Theorem 1) shows the existence of extreme points in
the set of all positive extensions of a given operator with values in an
order complete vector lattice.

Section 2 deals with extension of lattice homomorphisms. It is proved
that an extreme positive extension of a lattice homomorphism is again
a lattice homomorphism and a converse to this assertion also holds
(Theorem 2).

Finally, in Section 3, applying Theorem 3 of [4] and Corollary 3 of
Section 2, we give a characterization of the extreme points of the set of
all positive operators between two vector lattices of measurable functions
taking 1 into 1. Our characterization is akin to some results of Phelps [6]
and Iwanik [2].

Throughout the paper we adhere to the terminology of Schaefer’s
monograph [7]. We use the following notation which coincides with that
of [4]. X stands for an ordered real vector space and M for its vector
subspace. Y stands for an order complete real vector lattice. Given
TeL,(M,Y)(ie.a positive linear operator from M into Y) and a vector
subspace N of X with M < N, we put

E(T,N) ={8eL, N, Y): S|IM =T}
The notation E(T, X) is abbreviated to E(T).

The author is indebted to Doctors A. Iwanik and W. Thomsen for
stimulating remarks on the sub ect of this paper.
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1. Extreme positive extensions. As in [4], we associate with every
TeL, (M,Y) a map T;: X - YU{+ oo} defined by

T(x) =sup{Tl'(2): xa=>2e M} for all xeX.

‘We shall need two lemmas.
LemMMA 1 (cf. [4], (i)). If Te L (M, X), ®y € X and T;(x,) € Y, then

extr B(T, lin(Mu {z,})) # 0.

Proof. For ze M and t € R we put S(z+tw,) = T'(2)+tT;(x,). Then
8 € BE(T, lin(MU {x,})). Suppose that 8 =18 +(1—1¢)8", where 8, 8"
€ B(T, in(Mu {z,})) and 0 <t < 1. Then §'(w,), 8 (w,) > 8(w,), 80 that
8 (x,) = 8" (xy) = 8(x,). Hence 8’ = 8" = 8.

LemmA 2. Suppose that T e L, (M, Y) and N, N, are subspaces of
X with M< N< N,. If SeextrE(T,N) and 8, € extrE (8, N,), then
S, e extrE(T, N,).

Proof. Suppose that 8, =t8'+(1—1)8"’, where &', 8" € B(T, N,)
and 0 <t< 1., Then 8'|N, 8”'|N € E(T, N), whence §'|N = §8"'|N = 8.
Thus 8,8 € E(S, N,), and so 8’ =8" = 8§,.

THEOREM 1 (cf. [4], Theorem 1, and [3], 1.8.4). If Te L (M, X),
where M is a majorizing subspace of X, then extrE(T) # 0.

Proof. Consider the class M of all pairs (N, 8), where N is a sub-
space of X, M =« N and S eextrE(T,N). If (N,, 8,), (N, S;) e M, we
write (N,, §,) <(N,, 8;) provided N, < N, and 8, € E(8,, N,). Clearly,
(M, <) is a non-empty ordered class. By assumption and Lemmas 1
and 2, for any maximal element (N, §) of M we have N = X. Hence, in
view of the Kuratowski-Zorn lemma, it is enough to show that each
chain {(N,, 8,)} in M is bounded. Put

No=|JN, and B8,() =8,(2)if zeN,.

Then, as easily seen, (N,, 8,) € M and (N,, 8,) < (N,, §,) for all a.

COROLLARY 1 (cf. [4], (ii)). Suppose that X has an order unit u. If
TeL, (M,Y) and T;(u) e Y, then extrE(T)+@.

Proof. By Lemma 1, extrE(T,lin(Mu {u})) # 3. As lin(Mu {u})
majorizes X, the assertion follows from Theorem 1 and Lemma 2.

2. Extension of lattice homomeorphisms. Throughout the rest of the
paper X is assumed to be a vector lattice. Under this assumption, it is
known that S eextrE(T) if and only if S e E(T) and inf{S(jz—2|):
ze€ M} = 0 for each v € X ([4], Theorem 3).

We denote by H (X, Y) the set of all lattice homomorphisms of X
into Y ([7], Definition I11.2.4). Recall that T € H(X, Y) if and only if
TeL(X, Y)and |T(x)| = IT'(jw]) for each x € X ([7], Proposition II.2.5).
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THEOREM 2. Let M be a vector sublattice of X and let T ¢ H(M, X).
Then

(a) extr B(T) < H(X, Y).

(b) If inf{ly —T'(2)|: 2z€ M} = 0 for each y € Y, then

E(T)nH(X, Y) < extr B(T).

Proof. (a) Suppose that 8 e extr E(T). As 8 is positive, it is enough
to show that S(|z|) < |8(«)| for each # € X. We have

8(lz]) < 8(l2)) + 8(lw —2]) = [8(2)| + 8(lw —2]) < [8(x)| +28(lx—=2])

provided 2z € M. Hence the assertion follows from Theorem 3 of [4] (see
above).

(b) Suppose that S e E(T)nH(X, Y). Then
8(lz—z|) = |8(x—2)| = |8(x)—T(2)l,

so that, on account of our assumption, the assertion follows by another
application of Theorem 3 of [4].

Note that the assumption in (b) cannot be dropped. Indeed, take
X =Y and M = {0}. Then the identity map I on X is not an extreme
extension of I|M unless X = {0}.

COROLLARY 2. Let M be a majorizing vector sublattice of X. Then any
lattice homomorphism T: M — Y extends to a lattice homomorphism 8: X —~ Y.
In case M [T~'(0) is order complete, 8 can be chosen in such a way that for
each x € X there i8 z € M with 8(x) = T'(2).

Proof. The first part follows immediately from Theorems 1 and 2 (a).
Applying it, in case M/T-!'(0) is order complete, to the canonical
lattice homomorphism of M onto M /T~'(0), we get a lattice homomor-
phism q: X —> M/T-'(0). Let T: M/T~'(0)> Y be the quotient map of
T and put 8 = Tg. Clearly, 8 € H(X, Y)nE(T). Moreover, given # € X,
there is 2 € M with ¢(2) = ¢(), 8o that §(z) = T'().

In case ¥ = R and v is an order unit in X, the next result is due to
Bonsall ([1], the Corollary to Theorem 1). That this is so can be seen
using a well-known characterization of lattice homomorphisms ([3], 2.6.7,
or [7], the Corollary to Proposition II.2.6).

COROLLARY 3. Let we Y and inf{|ly —tw|: t € R} = 0 for each y € Y.
Suppose that veX, , SeL, (X,Y) and S(v) =w. Then Seextr{T e
L, (X, Y): T(v) =w} if and only if S e H(X, Y).

Proof. Put M = {fv: t € R} and T,(tv) = tw for ¢ € R. Then

T,eH(M,Y) and E(T,) ={TeL,(X,Y): T(v) = w}.

Hence an application of Theorem 2 yields the result.
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Remark. Under different assumptions on X, Y, w and v the equi-
valence given in Corollary 3 has been obtained by R. J. Nagel ([7], Pro-
position ITI.9.2).

3. Extreme positive operators between vector lattices of measurable
functions. Let (£,, 2;, 4;), where ¢ = 1,2, be positive finite measure
spaces. Denote by L,(u,) the (order complete) vector lattice of (u;-equi-
valence classes of) real-valued measurable functions on 2; and by s(u;)
its vector sublattice consisting of all simple functions.

We shall need the following

LEMMA 3. Suppose 8L, (s(u1)y Lo(us))y 8l =1p, and A eZ,.
Then 81, 48 a characteristic function if and only if

inf{8(|1,—11,]): te R} =0.
Proof. As S8([1,—1lp|) = [1—t|81+ [¢t] 81, We have
inf{S(|1,—1t1g|): te R} = (81,)A (81y).

By assumption, 81,+81, =1,. Hence 81, is a characteristic
function if and only if (S1,)A (81 ) = 0. From these statements we get
the assertion.

The next theorem generalizes Propositions 1.4.3 and 4 in [7] on sto-
chastic matrices. It is also akin to some results of Phelps ([6], Theorem 2.2)
and Iwanik ([2], Lemma 2 and Proposition 2).

THEOREM 3. Let X be a vector sublattice of Ly(u,) containing 8(u,)
and let Y be an order complete vector sublattice of Ly(u,). Suppose

(*) given v € X, there exist x, € 8(u,), v € X, and e, € B, with |v—,|
< ¢g,v and &,}0.

Then for each 8 € L, (X, Y) with 81, =1, the following three con-
ditions are equivalent:
(i) Seextr{T e L (X, X): T191 = 1o,}.
(ii) S takes characteristic functions imto characteristic functions.
(iii) Se H(X, Y).

Proof. The equivalence (i) <> (iii) follows readily from Corollary 3.
We shall show that (i) is also equivalent to (ii). Our assumptions on X
and Y allow us to apply Theorem 3 of [4] with M = {f1, : te R}. Accord-
ingly, we see that (i) holds if and only if inf{S(jx—1?l,|): teR} =0
for cach x € X. Replacing “X” by “s(u,)” in the latter condition, we
obtain a further equivalent condition. This follows from (*) as Y is Archi-
medean. Finally, the set of all # € X such that inf{S(lz—11,|): te R} =0
being a vector subspace of X, the desired equivalence is a consequence
of Lemma 3.
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Remarks. 1. In view of a result of Peressini ([56], Chapter 4, Pro-
position 2.4), the assumption (*) is satisfied in case X is a topological
vector lattice the topology of which is complete and metrizable, and
8(u,) i8 a topologically dense subset of X. In particular, Theorem 3 holds
with X = L, (4,) and Y = L, (ps), where 0 < p,, p, < oo.

2. The equivalence of conditions (ii) and (iii) in Theorem 3 can also
be proved directly using the arguments given in [2], p. 175.

3. The role played by the measure u,,% = 1,2, in Theorem 3 is
limited to generating the ideal .4#7; of null sets in ;. We leave it to the
reader to establish which properties of .47, are essential in the proof.

4. Under the assumptions of Theorem 3 conditions (i)-(iii) are equi-
valent to

(iv) 8(1,-1g) = (814)(8S1g) for all A,Be ZX,.

Indeed, (iv)=(ii) and (ii)A (iii) = (iv). Using (=), one can also verify
that if X and Y are additionally closed under multiplication, then (iv)
i3 equivalent to

(iv)" 8 t8 multiplicative (cf. [6]).

Added in proof. 1. A different proof of the first part of Corollary 2
can be found in another paper by the aythor (Extension of vector-lattice
lomomorphisms, Proceedings of the American Mathematical Society, in
print). :

2. Dr. W. Thomsen has recently proved that the approximation
condition which appears in Corollary 3 is equivalent to w being a weak
order unit.

3. Part III of the present paper has been recently accepted for publi-
cation in this journal.
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