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COMMON FIXED POINTS FOR ISOTONE MAPPINGS

BY

RALPH DEMARR (SEATTLE, WASH.)

Tarski [4] has obtained various fixed point theorems for isotone
mappings of a complete lattice into itself. Unfortunately, his results
are not directly applicable in certain interesting situations. For example,
Ponomarev [3] has recently obtained a theorem on the existence of a
closed non-empty common fixed set for two commuting multivalued
mappings in a compact Hausdorff space. Tarski’s results are not appli-
cable since the collection of non-empty closed subsets of a compact
Hausdorff space do not form a complete lattice except in the trivial case
of a space consisting of a single point. In this paper we shall slightly
generalize Tarski’s results as well as present some new results applicable
in many situations, but, in particular, in the case of isotone set-to-set
mappings in which only non-empty sets are involved. For a general
discussion of partially ordered sets the reader may refer to Birkhoff [1].

Definition 1. Tet X be a partially ordered space. An element
ceX is said to be chain-compact if, for every non-empty chain L < X,
where = < ¢ for all x¢L, infL exists. Recall that a chain is a totally
ordered subset of X.

This definition is motivated by the so-called “nest characterization
of compactness” (see [2], p. 163). It is clear that if ¢ is chain-compact
and ¢, < ¢, then ¢, is chain-compact.

THEOREM 1. Let X be a partially ordered set and let & be a non-empty
commutative family of isotone mappings of X into itself. If there ewists
a chain-compact element ceX such that f(c) <c for all fe, then there
exists a minimal common fixed point aeX for the family #; i. e., fla) =a
Jor all fe# and a is minimal with this property.

(Recall that a mapping f is isotone if f(2) < f(y) whenever = <y.)

Proof. Define M = {z:f(») < <ec for all fe#}. Since ceM, M is
non-empty. By Zorn’s lemma there exists a maximal chain L < M.
Clearly L is non-empty and since ¢ is chain-compact and z < ¢ for all
weL, infl, = a exists. Clearly f(a) <f(z) <<x <c¢ for all z¢L and all
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fe#. Hence, f(a) < a <c for all fe.#. which means that aeM. Now if
ge# and we define b = g(a) < a, then

f(b) = g(f(a)) <g(a) =b<c

for all fe.#. Hence, beM . Since L is a maximal chain and b < a = inf L,
we must have beL which means that a < b; hence, a = b. Thus, we
have g(a) = a for all ge.#. Now if ;< a < ¢ and f(x,) = @, for all fe.s,
then x,eM. Since L is a maximal chain and z, < a = inf L, we must
have x,¢L; hence, v, = a. Thus, @ is a minimal common fixed point for
the family £, q. e. d.

This result slightly generalizes theorem 2 of Tarski (see [4], p. 288).
It can also be applied to generalize a recent result of Ponomarev [3]
in the following way: let F be any topological space and let F' be a non-
empty compact subset of E. Let X be the collection of all (or all closed)
subsets of E which have a non-empty closed intersection with F. Let X
be partially ordered by inclusion; thus, every element of X is chain-
compact. Hence, if .# is any non-empty commutative family of isotone
mappings of X into itself, then there exists a minimal non-empty set
A < E such that f(4) = A for all fef.

One may also apply theorem 1 in the following way: let & be a con-
nected compact Hausdorff space and let .# be a commutative family
of continuous single-valued mappings of E into itself. If we let X be the
collection of all non-empty connected closed subsets of K, then .# can
be regarded as a commutative family of isotone mappings of X into it-
self (for each fe# and each AeX define f(A) = {f(x) : weA}). It is clear
that every element of X is chain-compact. Thus, there exists a minimal
non-empty connected closed set A < E such that f(4) = A for all fe.#.

Definition 2. A partially ordered set X is called a complete semi-
lattice if, for every non-empty M < X, supM exists. .

We note that if X is a complete semi-lattice and if M < X is non-
empty and bounded below, then inf M exists.

THEOREM 2. Let # be a non-empty commutative family of isotone map-
pings of a complete semi-lattice X into itself. If there exists beX such
that

b<sup{f‘(d):m=1,2,...}

for all fet, then there exists a common fived point aeX for the family 5
which is the minimal common fixed point in the set N = {x:b < x}.
Proof. Define M = {x:b <z and f(z) <z for all fef}. If we
set ¢ = sup X, then eeM so that M is non-empty. Since M is bounded
below, inf M = a exists. It is clear that b <a and f(a) <a for all fes;
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hence, aeM. Using these facts and the conditions of the theorem, we
have

b<sup{f'(d):n =1,2,...} <sup{f(e):n=1,2,...} = f(a)

for all fe.#. Now, for any gef, f(g(a)) = g(f(a)) < g(a) for all fes,
Hence, g(a)eM for all ge#. Thus, a <g(a) for all ge# and therefore
fla) =a for all fe#. It is clear that e is the minimum common fixed
point in the set N = {z:b <2}, q. e. d.

LeMMA 3. If f is an isotone mapping of a complete semi-lattice x into
wself and if there exists an element beX such that b < f(b), then f has a
maximum fized point.

Proof. Define M = {x: 2 < f(x)} and @ = supM. Thus, a < f(a)
< f(f(a)) so that f(a)eM and, hence, f(a) < a; i. e., f(a) = a. It is clear
that if f(x) = «, then <M and, hence, # < a, Therefore, a is the ma-
ximum fixed point, q. e. d.

Note. Although the author proved this lemma independently of
Tarski, the original proof is due to Tarski [4]. The proof is given here
to make this article self-contained.

THEOREM 4. Let f and g be commutative isotone mappings of a com-
plete semi-lattice X into itself. If h(x) = f(g(m)) has a fixed point, then f
and g have a common fixed point.

Proof. Suppose b = h(b). Since h is an isotone mapping of the
complete semi-lattice X into itself, it has a maximum fixed point aeX
(by lemma 3). Since f and ¢ commute with h, f(a) and g(a) are also fixed
points for h. Since @ is a maximum fixed point for h, we have f(a) < a
and g(a) < a. Therefore, h(a) = f(g(a)) <f(a)<a and h(a) = g(f(a))
< g(a) < a; since h(a) = a, we have f(a) = g(a) = a, q. e. d.

THEOREM 5. Let f and g be isotone mappings of a complete semi-
lattice X into itself which have the following two properties:

L if @< f(x), then f(z) <g(x), 2. if f(&)<w, then g(z) < f(z).
Then if f or g has a fived point, there is a common fixed point.
Note. The mappings f and g need not commute. The two proper-

ties given above generalize the situation where ¢ = f" for some integer n.

Proof. Suppose f(a) = a. By the two properties given above ¢g(a)
< a and a < g(a); therefore, g(a) = a.

Suppose g(b) =b. Define M = {xr:b <2 and f(z) <x}. If we set
e = sup X, then eeM so that M is non-empty. Since M is bounded below,
infM = ¢ exists. It is clear that b < ¢ and f(¢) <e¢. From the condi-
tions of the theorem we see that b = ¢g(b) < g(c¢) and ¢(c¢) < f(c); hence,
b<f(c) and f(f(c)) < f(c) so that f(c)eM. This means that ¢ < f(c);
therefore, f(c) =¢ = g(¢), q. e. d.
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