COLLOQUIUM MATHEMATICUM

VOL. LV 1988 FASC. 2

ON THE DUAL SPACE OF Hy®

BY

OSCAR BLASCO (ZARAGOZA)

1. Introduction. When we are dealing with Hardy space HE(D) of B-
valued analytic functions on the disk D for some p (1 < p < o), and we want
to obtain the functions in L(T) with f(n = 0 for n < 0 as boundary values
of this space, we have to require a certain property on B. This property was
defined by Bukhvalov and Danilevich [4] and it was called the analyric
Radon—Nikodym property.

Throughout the paper we are concerned with Hardy spaces defined on
the boundary of D and some questions about duality will be studied. Some
results about this subject were considered in [3] for 1 <p < o0 and we will
study here the case p = 1.

We denote by H} the space of Bochner-integrable functions f in L'(T)
such that f(n) =0 for n <0, and by HL® the space defined below in terms
of B-valued atoms. Bourgain has recently proved [2] that every function f in
H} can be decomposed into B-atoms, i.e, Hy = Hy®. We actually know that
both spaces coincide if and only if B has the U.M.D. property ([1], [2)).

We are interested in obtaining a representation of (Hy ®)*.

First of all we recall what happens in the scalar case. It is well known
that the space of functions of bounded mean oscillation (BMO), defined by
John and Nirenberg [8], may be viewed as the dual space of Re H'. This last
result was proved by Fefferman [7]. Subsequently, R. Coifman showed that
Re H! could be defined by atoms, i.e, H' = H"'*, and a direct proof of the
duality (H!'®)* = BMO may be found in [5].

On the other hand, let us recall that when we take functions with values
in a Banach space B, and we intend to give a representation of the dual
space of L% (T), the geometry on the space B must be considered. In fact, for
1<p<mx,

(1.1)  (LB)* = L. if and only if B* has the R.N.P. ([6]).

Both facts suggest the following result which will be proved in this
paper:
(1.2) (HY™)* = BMOg. if and only if B* has the R.N.P.
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2. Definitions and lemma. Let | < p < ¢ and let ae L. We say that a is
a (1, p, B)-atom if

(1) suppa < I, I is an interval of T;

(2) llall, < 1/m(D'™. 1/p+1/g =1 (m is Lebesgue measure);

(3) fa(nde =

1
The function a(t) = byxr(t), where ||b]|g = 1, is also considered a (1, p, B)-
atom (yx; denotes the characteristic function of E). We define (see [5])

Hy? = {feLyl f(1) = Zla(r),

Z |4] < oo and the gjs are (1, p, B)-atoms],

and if we put
Iflluge = inf ¥ |4,
i=1

where the infimum is taken over all the representations of f, then
(HE". |l llul-r) is a Banach space. It is easy to see that

(2.1) If f belongs to HL? and

f = Z /1;0,-,
N i=1
then Y A;a; converges to f in Hy? when N — .
i=1

Let 1 < ¢ < x: we define (see [5])

/q
BMoz=§feL's| sup (~ Ilf(r)—lelzdt) <oo}

(1)
where I denotes an interval and
fi= i ’f(n d
If we put
1 lsmog = Na.s () +]| _Tff (1) dt]|5,
where

) : 1 ' l/q
ath) = int{c: sup (o | ~figar) “ < cl,



DUAL SPACE OF Hy* 255

then (BMO{, || llamog) is a Banach space for every g (1 < g < x). We have
just defined BMOY} for different values of g, but we actually have

(22) For every q (1 <g < x),
BMO} = BMO}  and | llawog ~ Il llswo}-

The proof of (2.2) is a corollary to John and Nirenberg’s lemma [8]
since the technique may be reproduced by merely changing the absolute
value by the norm in B.

LemmAa. If 1 <p< oo, then L < Hy? = L and the embeddings are
continuous.

Proof. Given fe L%, f may be written in the following way:
S =|§f @ dt|[sa, )+ 211 1], a2 (1),
T

where

[NAGLL f@O)—[f(s)ds

- T 0 = T
T

are clearly (1, p, B)-atoms. Moreover,
I Nt < || §f @de||+ 21111, < 3111,
T

For the second embedding, let 1 < p < oo and let a be a (1, p, B)-atom. Due
to Holder’s inequality and the definition of (1, p, B)-atom we have

m()'e = 1.

@3) {llalsdr = [llallsdr < lhaly ({12 )™ < oo

(The case p = o0 is easier.)
By (2.3), if f belongs to Hj? and

f= Z j’iah
i=1
then
Il < T 14

and so ||flly < I fllukr.
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3. Theorem.
THEOREM. (a) If | <p< oc and 1/p+1/q =1, then

BMOYj, < (HL7)*.

(b) If 1 <p <o0, 1/p+1/q =1 and B* has the Radon—Nikodym property,
then

(HL-"* <« BMO4..

(c) If there exists a number p (1 <p < ) such that (Hy")* = BMOj.,
then B* has the Radon-Nikodym property.

Proof. (a) Let 1 < p < oo and let g be a function in BMO$.. We define
T,: Hg? =R in the following way: Let a be a (1, p, B)-atom such that

fa(t)dt =0
1
then
(3.D T,(a) = | (1), a(t))dt,
T

where ¢, ) denotes the duality between B and B*.

Since a belongs to L[5 and g belongs to BMO%. < I%., (3.1) is well
defined.

It is immediate to show that if g belongs to L§-, ¢ belongs to L%, and J
is an interval:

(3.2 [<G(®), 9O)—0,>dt = [G(O)—gs, @O dr..
J J

Using (3.2), Holder’s inequality and
fa(s)ds =0,
1

we obtain

T @l < (flly () —gillg-dt)" |lall,

( 0 'Ilg() g;llz)"’ ligllamog.-

For an atom of the form a = be we have

IT; (@) < IIblis || g (®)dt
T

8* < [19llsmog.-

Now an argument liké in [5], p. 632, leads us to considering T, in
(Hg?* and || T;l| < ligllsmog.-
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(b) Let 1 <p < oo and let T be an element of (Hy?)*. By the Lemma,
for every ¢e L% we obtain

(3.3) IT(@) < ITIlNlplly1.r < 30T -lloll -

Then T may be considered as an element of (L5)* and since B* has the
Radon-Nikodym property, (1.1) implies that there exists a function g in L.
such that

T(p) = j g(t), (t)>dt for every pe L.

We have to prove that g belongs to BMOy.. First of all,
34 Ifg@dt|lss = sup [f<bxr(®), g(t)>dt]
T bl p=1

= sup |[T(bxr) <IITIl.
sl =1

Let I be an interval. By (1.1) and (3.2) we have

1/q
”g(t) gr* ) - sup{ <y(t()”llgqt, q,(,)>dt‘, ||¢||Lg(,,<l}

m(I)!4 ||
=sup{ ( ®), "’((’,)Jf’>dt\, n«ang(,,sl}
1

=@
= 2S“P{ T(Wh)‘, loll gy, < l}
< 2sup I T, Wlly1. < 15 = 2IITII.
Using this together with (3.4), we get
lllemog. < 3IITII.

(c) In order to show that B* has the Radon-Nikodym property we are
going to prove the following equivalent result (see [6], p. 63):

(3.5) For every T in L(L', B*) there is a function g in L} such that
T(x) = [a(t)g(t)dt  for every a in L'.
T

We fix an operator T in L(L', B*) and define T: Ly »R by

z bXE)— z <T(XE),b>,

1=1

where b, belong to B and {E;] are disjoint measurable sets. It is obvious
that
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AL bixe)l < X bls T m(E) =TI 2 boxel,
i= i=1 i=1

By density, Tis extended to (LL)*. Using the value p in the hypothesis and
the Lemma, we obtain

7@ < Tl llll1p for every o in H”,

and again T may be considered as an element of (H}?)*. Therefore, there is a
g in BMO%. such that

T(@) = [<g(), @(t)>dt for every ¢ in Hy®
T

We have only to prove that g is bounded almost everywhere. Since g belongs
to Ly, putting I,(t1) = (t—e, t+¢&) we have

| | g()dsllpe = sup | | &, g(s)>ds
I® lB=1 1,0
=”b~°‘”UP 1T (bxs ) = sup. 1<b, T (s, e) )
=1

= 1T Gt lls= < 1T m(lc) =TIl - 2.

Using Lebesgue’s differentiation theorem, we have

1
g(1) =lim— | g(s)ds ae.,
5-.026 I(0)
and so |lg(t)llgs < ||T|| ae.

CoROLLARY. (a) If B* has the Radon—Nikodym property and 1 < p < 0,
then Hy? = HY® with equivalent norms. -
(b) (Hy ®)* = BMO}- if and only if B* has the Radon-Nikodym property.
Proof. Given 1 <p < o0, let abea (1, oo, B)-atom. It is clear that

lall, = (flla (ol dr) Y < Nlall om (D)7 <

(D)
Consequently, Hy»® < Hy?, and if f belongs to Hjy®, then
1A lg2p < WS Moo
Now, using part (b) of the Theorem we have
(3.6) (Hy®)* =BMO}. and (H}?)* = BMO%..

Because of (2.2) and the representation of the dual spaces in (3.6), we obtain
part (a). Now, part (b) is an immediate consequence of the Theorem.

Remark. Since C has the Radon-Nikodym property we have just
proved that H¥? = H{®, which can be found in [5]. But, on the other hand,
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the condition on B* is not necessary in the latter corollary since it may be
proved as in [5].
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