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PROPER CONGRUENCES DO NOT IMPLY A MODULAR
CONGRUENCE LATTICE
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1. Introduction. If A = {4, f>,.; is a universal algebra, by a con-
gruence R on A we mean an equivalence relation R < 4 X A which is
preserved by the operations of U; that is, for each m-ary operation f;
and a;Eb; + =0,1,...,n—1, we have fi(ay...a,_,)Bf;(b,... b,_,). The
congruences of A, Co A, form a lattice under set inclusion. If Co A is
modular, this fact has important bearing on the determination of struc-
tural properties of A. Permutability of congruences is known to imply
modularity of the congruence lattice ([1], p. 162). The example given in
Section 3 shows that proper congruences (see Section 2) do not imply
modularity of the congruence lattice.

2. Background. The congruences of an algebra U are said to be
permutable provided the relative product R|S = S|R for all R, S¢Co .
A is said to have proper congruences provided no distinet R, SeCo A
have a common equivalence class. Groups for example have both permu-
table and proper congruences, whereas semigroups in general have neither
permutable nor proper congruences. In algebras with proper congruences
one may in principle replace the study of congruences by a study of
Z-ideals, the equivalence classes of any fixed element Z. Various authors
have investigated relationships among the notions proper, permutable,
and modular Co¥. Mal’cev[2] has shown permutable congruences do not
imply proper congruences for a given algebra 2. Conversely, Valuce[4]
has shown proper congruences do not imply permutable congruences.
Several easy examples (e. g.: the trivial semigroup on three elements) show
that modularity of Co % implies neither proper nor permutable congru-
ences. The counterexample of this paper settles in the negative the only
remaining possible implication among these three notions.

3. Construction of U and CoA. We desire to construct an algebra
A = (A, fDi1, With proper congruences, for which Co % is non-modular.
The algebra will be multi-unary, and the congruence lattice will be the
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familiar 5 element non-modular lattice. Let A = 10. In addition to
Id = identity relation on A, and A X A = universal relation on 4, we
consider equivalence relations defined by partitions of A as follows:
R, = {{0, 1, 2}, {3, 4}, {5, 6, 7}, {8, 9}}; B, = {{0, 1,2, 3, 4} {5,6, 7, 8, 9}};
R, = {{0, 7}, {1, 9}, {2, B}, {3, 8}, {4, 6}}. The task is now to introduce
operations on 4 which will cut down the lattice Co U to precisely Id,
AxXA, R, R, R,.

AxA
Ry
R,
Ro
Id
Fig. 1

We will then be done, since these relations will be proper congruences,
and the lattice Co U will have the form in Fig. 1. The algebra in que-
stion will be A = (A4, @ovcqs Yaps A)y (@ b) e R,— Id, (¢, d) e By,— Id where the
operations are all unary, defined as follows:

¢c fx=aorhd o if 2R a

X)) = xr) =
Pareal®) =) 4 otherwise; Var(® =1, g xR, b

Alx) = x4+ 5(mod 10).
Note each of these operations is well defined, and indeed each pre-
serves the relations Id, A X A, R,, R,, R,, as one can easily check.

4. Verification of structure of Co9. It is now a matter of seeing
that these operations preserve no other equivalence relations on A.
We proceed by several lemmas. Let R = 4 X A be an equivalence relation,
R #1d, AX A, Ry, R,, R,. We shall think of R as being given by a par-
tition of A.

LEMMA 1. If (a,b)eReCo U, and (a, b)¢R, then R, < R.

Proof. Let {a, f} be the R, clags of a, and let (¢, d)eR,. If ¢ = d
then (¢, d)eR. If ¢ + d then ¢,,,; is among our opearations. Now (a, b)e R
= (%/cd(a')y ‘Pa/cd(b))GRa and  g@,cq(a) =c. Also (a,d)¢R, = upeq(b) = d,
therefore (¢, d)e R and R, < R as asserted.

LEMMA 2. If ReCo U has any equivalence class with at least three ele-
ments, then R, = R.

Proof. Immediate from Lemma 1 since each R, class has only two
elements.
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LEMMA 3. If ReCo U has precisely two elements in all of its equivalence
classes then R = R,.

Proof. If R #+# R, then H(a, b)e R— R, and by lemma 1 R, = R,
but this is a contradiction since R, has some three element equivalence
classes. Now we infer from lemmas 1, 2 and 3 that for ReCo ¥, if R +# Id,
AXx A, R,, R,, R, then either Ry R or R = R,. We consider these two
cases separately.

Case 1. R < R,. From the fact R # Id, we can fix (¢, d)e R—Id,
thus also (¢, d) e R, and (¢, d) ¢ R,. Since B # R, we can also fix (a, b)e B,— R
and thus (a, b) # (¢, d). Further (as one can easily see from the construc-
tion of R,, i. e.: “taking one small and one large element’’) we can say
without loss of generality ‘(a, ¢)eR, and (b, d)eR,. Now vy, is one of the
operations of A and (¢, d) e R, whereas y,,(¢) = a, y,(d) = b and (a, b)¢R;
thus R¢Co W.

Case 2. Ry c R. Sub-case 1. R c R, (and of course R, # R # R,).
Then there are only two possibilities for R, namely: B, = {{0, 1, 2, 3, 4},
{5, 6, 7}, {8,9}} or R, = {{0,1,2}, {3, 4}, {5,6,7,8,9}}. In both cases A
fails to preserve R: (2,3)eR; but A(2) =17, 4(3) =8 and (7, 8)¢R,;
(7,8)eR, but A1(7) =2, A(8) = 3 and (2, 3)¢R,.

Sub-case 2. R ¢ R,. Say (¢, d)e R— R,. Note that R, ¢ R since the
transitive closure of K, and R, is A X A, and thus R, R, R, < R = R
= A X A. Then let (a, b)e R,— R. Now we may say without loss of gene-
rality that (a, c)eR, and (b, d)eR, (a and b are in separate R, classes,
as are ¢ and d). y,, is an operation of U, (¢, d) e R and y,,(¢) = @, py(d) = b
but (a, b)¢R so R¢Co .

This concludes the proof that Co A consists precisely of Id, A x A,
Ry, B, R,. The example here provides another proof[4] that proper con-
gruences do not imply permutable congruences; this is easy to see directly
since (3, 6)e R,| R, whereas (3, 6)¢R,| R,.
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