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Definitions. Suppose f is a function from a topological space X into
a topological space Y. The statement that f is a connectivity function
means that if C is a connected subset of X, then {(», f(»))|« is in C} is
a connected subset of X X Y. The statement that f is peripherally conti-
nuous means that if U is an open subset of X containing a point  of X
and V is an open subset of Y containing f(x), then there is an open subset W
of U containing = such that f[B(W)] is a subset of V, where B(W) is the
boundary of W. The statement that f is almost continuous means that if D
is an open subset of X x Y containing the graph of f, then there is a con-
tinuous function g from X into Y which has a graph lying in D. The
statement that f is dense in X X Y means that if U and V are open subsets
of X and Y, respectively, there is a point # of U such that f(x) is in V.
Notice that if Y is a non-degenerate Hausdorff space and f is dense
in X x Y, then f is totally discontinuous (i.e. nowhere continuous).

Introduction. Many examples of totally discontinuous connectivity
functions of real variable have appeared. In fact, Cornette has shown [3]
that if Y is a connected separable metric space, there is a connectivity
function with domain the unit interval I and range Y, and the function
constructed in that argument is dense in I X Y. The techniques used in .
the construction of these examples rely on the axiom of choice and the
fact that in order that a function with a connected real domain be a con-
nectivity function, it is necessary and sufficient that the graph of the
entire function be connected. On the other hand, if f is a function from, I*
into the numbers, having the entire graph of f be connected is not suffic.ent
to insure that f be a connectivity function. Real valued connectivity
functions with domain I? are in some ways better behaved than those
with domain I. For example, it follows from Corollary 1 of [9] that every
real valued connectivity function with domain I* is almost continuous,
whereas examples have been given [3], [6], [8] of real connectivity func-
tions which are not almost continuous. Although examples of connectivity
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functions with domain 12 having finitely many discontinuities have
appeared, [5], [7], a totally discontinuous connectivity function with
domain I2 has not been presented. A connectivity function from I? into I
will be described here which is not only totally discontinuous, but is
dense in I* x I. An effective example is constructed using an extension
of the technique used for real functions in [2].

The Example. It follows from theorems in [4], [5], [9] and [10] that
a function from I* into I is a connectivity function if and only if it is
peripherally continuous.

Let D denote the square disc {(x, y)|max(|z|,|y|) < 1}. Let A denote
the “middle third” Cantor subset of I, and let M’ be the set {(z,y)|
max(|2|, |y|) is in 4}. Now, countably many borizontal segments and.
countably vertical segments, all with endpoints on M’, will be added
to M'. Notice that if the segment (a, b) is a component of I— A4, then
b/(b—a) is an integer greater than 1.

Let H be the collection such that 8 belongs to H if and only if there
is a component (a, b) of T— A and an integer n such that |n| < b/(b—a)
and 8 is the horizontal segment with end points (a, n(b—a,)) and
(b, n(b—a)) or 8 is the horizontal segment with endpoints (— a, n(b—a))
and (—b, n(b—a)). Let V be the collection such that S belongs to V
if and only if there is a component (a, b) of I— A and an integer » such
that |n| < b/(b— a) and 8 is the vertical segment with endpoints (n (b—a), a,)
and (n(b— a), b) or 8 is the vertical segment with endpoints (n(b— a), — b)
and (n(b—a), —a). Let M = M'VH'UV* (if @ is a collection of sets,
G* is the union of the sets in @). Fig. 1 gives a sketch which includes
some of the points of M. If (a, b) is a component of I— A, then there
are a total of 4[2b/(b—a)— 1] segments in HUV which. lie in the open
set {(z, y)|a < max(|z|, |[y|) < b}, and with the addition of these segments
to M’, this open set is broken up into 4[2b/(b—a)—1] square shaped
open sets. Thus each component of D— M is the interior of a square.
Another property of M which will be of importance will be pointed out
now. Suppose (a, b) is a component of I — A and ¢ is an element of I bigger
than b such that no component of I— A longer than (a, b) intersects
[b, t], and » is an integer, |n| < b/(b— a). By definition, the interval with
endpoints (a, n(b—a)) and (b, n(b— a)) lies in M, but it is also true that
the interval with endpoints (a, n(b—a)) and (f, n(b— a)) lies in M. For
suppose b <z <t If zis in 4, then (2, n(b— a)) is actually a point of M’
since [n|(b—a)<z. If 2z is not in A, then 2 is in a component (¢, d) of
I— A which lies to the right of (a, b) and is no longer than (@, b). There
will be a non-negative integer k such that (b—a) = 3¥(d—c). n(b—a)
= n3*(d—c), and since |n| < b/(b—a) = b/3¥(d—¢) < d/3*(d— ¢), it fol-
lows that [n3*| < d/(d— ¢), so that the interval with endpoints (¢, n3*(d— ¢))



CONNECTIVITY FUNCTIONS . 66

and (d, n3*(d—c)) lies in M. Thus z is in M. Similarly, it can be shown
that if ¢' < @, and no component of I— A longer than (a, b) intersects
[ty a], and |n|(b—a)<t’, then the entire interval with endpoints (¢,
n(b— a)) and (¢, n(b—a)) lies in M. Clearly, it follows that the interval
with endpoints (—¢,n(b—a)) and (—t, n(b—a)), the interval with
endpoints (n(b—a), ') and (n(b—a), t), and the interval with endpoints
(n(b—a), —t'} and (n(b—a), —1) also lie in M.
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Now, a monotonic increasing sequence M,, M,,... of closed and
connected subsets of I* will be defined. Let M, = {(=, y)| for some point
(u,v) of M, (x,vy) = }(u,v)+ (%, 3)}. M, has the same configuration
with respect to I? that M does with respect to D. If » is an integer greater
than one, let M, be the set to which (z, y) belongs if and only if (1) (x, ¥)
is in M, _,, or (2) for some square shaped component S of I*— M, , with
center (a, b) and side of length 2d and for some point (u, v) of M, (2, y)
= d(u, v)+ (a, b). Now a certain property of M,UM,u... will be
established.

LEMMA. Suppose (z,y) is in M,UM,U... and interior to I*, m s
the least positive integer such that (x, y) is in M,, and R is an open set con-
taining (x, y). Then there is a simple closed curve C such that C lies in M, ,NnE
and the interior of C lies in R and contains (x, y). A

Proof.1f7,,Z,,...,Z,is afinite sequence of points,let C(Z,, Z,,...,Z,)
denote the set of all points Z which lie on an interval with endpoints Z;
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and Z;,, for some positive integer ¢ < n. Let ¢ be a positive number such
that {(s, {)|max(|s— |, {—y|) < ¢} lies in R. Assume » >1, and let E
be the square component of I*— M, , which contains (z,y) (if » = 1,
E = I*). Let (a, b) denote the center of E, d the distance from (a, b) to
the right side of E, and. (u, v) the point of M such that (x, y) = d(u, v)+
+(a, b). It will be assumed without loss of generality that 0 < v < .
Several cases must be considered.

(1) Suppose » is an element of A but not the end of any component
of I— A. Let (¢, f) be a component of I— A to the left of » such that
u—e< ¢ (if v<<u, also make u—e < (u—v)/4) and such that no compo-
nent of I— A longer than (e, f) intersects [f, w]. Then let w be an element
of A to the right of # such that w—u < ¢ and no component of I— A4
longer than (e, f) intersects [f, w]. If v = », let @,, @,, @3, and @, be the
points (e, e), (w, e), (w, w) and (e, w), respectively. If u > v, let n be the
largest integer such that (n—1)(f—e)<< v, and let @,, Q,, Q;, and @,
be (3’ (n—1)(f— 3))1 (w7 (n—1)(f— 6))7 (w7 (n+1)(f— 3))) and (97 (n+1)
(f—e)), respectively. n will be such that |n|+1< f/(f—e). Then let
P,, P,, Py, and P, be d@,+ (a, b), dQ;+(a, b), dQ5+(a, b), and dQ,+(a, b),
respectively. The simple closed curve C (P, P,, P;, P,, P;) has the desired
properties.

(2) Suppose « is not an element of A. Then the point («, v) is on one
of the segments in H, and there must be two components F' and F' of
I*— M, such that (z,y) is on their common horizontal edge. Assume F
is above F', and let (p, q) be the center of F, r be the distance from (p, q)
to the right side of ¥, and (w, —1) the point of M such that (z, y) = r(w,
—1)4(p, q). Let (¢, f) be a component of I — A such that 1—e < min(¢/2,
1—aw|/3, lw+1|/3) and such that no component of I— A longer than
(e, f) intersects [ f, 1]. Let n be the largest integer such that (n—1)(f— e) < w,
and let @y, Q,,Qs, and @, be ((n_l)(f_ €), _1)7 ((n_l)(f—")’ _f)’
(n+1)(f—¢), —f), and ((n+1)(f—e), —1), respectively. Now, let P,,
P,, P3, and P, be rQ,+(p, q), 7Q:+ (s 9), @5+ (P, q), and 7@+ (P, 9),
respectively. P, is to the left of (», y), P, is above P,, P, is to the right
of P, and above P,, and P, is to the right of (x, y). C(P,, P,, Pg, P,) lies
in CI(F)nM,  ,NR. In a similar fashion, P;, Pg, P,, and P, can be deter-
mined so that P; is to the right of (z, y), P¢ is below P;, P, is to the left
of Py and below Pg, P, is to the left of («, y), and C(P;, Ps, P,, Pg) lies
in Cl(F')nM,,.,nR. Then, C(P,,P,,..., Ps, P,) is the desired simple
closed curve.

(3) Suppose u is the left end of a component of I— 4, and v < u.
Using methods similar to those in (2), one can determine points P,, P,, P,
and P, such that P, is above (2, y), P, is to the left of P,, Py is below P,
and to the left of P,, P, is below (w,vy), and C(P,, P,,P,, P,) lies in
EnM,nR. If (z,y) is on the left edge of only one component F of



CONNECTIVITY FUNCTIONS 57

I*— M, then the techniques used in (2) can be used to determine points
P;, Py, P,, and Py of C1(F)nM,,, such that C(Py,P,, ..., P, P;) will
be the desired simple closed curve. Suppose (x, y) is on the left edge of
two components F and F' of I*—M,. Assume F is the lower one, and.
let (p, q) be the center of F, and r be the distance from, (p, q) to the right
edge of F. Let (e, f) be a component of I — A such that 1—e < ¢, and no
component of I— A longer than (e, f) intersects [f, 1]. Let @5, @¢, and @,
be (—1,e),(—e, ), and (—e, 1), respectively, and let P, Ps, and P,
be Qs+ (p, 9), @6+ (P, q); and rQ,+(p, ¢), respectively. Similarly, one
can pick points Pg, Py, and, P,, from Cl(F’) so that C(P,, P, ..., Py, P))
is the desired simple closed curve.

(4) If w is the left end of a component of I— A4 and » = v, then the
techniques used in (3) can be used four times to determine a sequence
P,, P,, ..., P, such that C(P,, P,, ..., P;,, P,) will be the desired simple
closed curve. ,

(5) Suppose u is the right end of a component of I—A. If v < u,
the case is almost the same as (3), so suppose » = v. Let (e, f) be a com-
ponent of I— A to the right of 4 such that f—u < ¢ and no component
of I— A longer than (e, f) intersects [u, ¢]. Let » be the largest integer
such that n(f—e) < v, and let Q,, @, Qs, @s, and @, be (u,n(f—e)),
(f’ n(f— 6))’ (£, 1), (”(f_ e)’f)a and ('n(f— €), u)9 respectively. Let Py, P,,
Py, P,, and P; be dQ,+(a,bd), dQ,+ (a, d), dQs+ (a, ), dQ,+ (a, b), and
dQ;+ (a, b), respectively. Let F be the component of I*— M, of which
(@, y) is the upper right corner. Using the techniques of (3), one can de-
termine points Pg, P,, and Py of Cl(F)nM, ,nR such that C(P,, P,,
...y Pg, P;) will be the desired simple closed curve.

This completes the proof of the lemma.

Now, for each pumber ¢ in I, let g, be a continuous function from I
onto I which is constant over each component of I— A and such that
g:(1) =t. Let f;, f,, ... be the sequence of functions defined as follows:
f1 has domain M, and is such that if (z, y) is a point of M, and (u, v) is
the point of M such that (@, y) = }(u, v)+ (3, }), then f,(z, y) = g,[max (|ul,
lv|)]. Notice that if § is a component of I*— M,, then f, is constant on
B(S8). If » is an integer greater than 1, f, has domain M,, agrees with
fooion M, _,, apd if (z, y) is a point of M,— M, ,, 8 is the square compo-
nent of I*— M, _, containing (z, y), (a, b) is the center of S, 2d is the length
of a side of 8§, (u, v) is the point of M such that (x, y) = d(u, v)+ (a, b),
and ¢ is the number which f,_, assigns to every point of B(S), then f,(z, y)
= g;[max(|u|, |v|)]. The desired function f is defined as follows: if (x, y)
is in M, for some positive integer n, then f(x, y) = f,(x, y); if (z, y) is
in P—(M,uM,u...) and 8§,, S,, ... is the sequence such that for each
positive integer n, 8, is the square component of I*— M, which contairs
(2, y), then f(z,y) = limsupf,[B(8,)].
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Now it will be shown that f is peripherally continuous. Suppose
(2, y) is a point of I?, U is an open set containing (z, ¥), and V is a segment
containing f(z, y), Let ¢, > 0 be such that {(s, t)|max(|jz—s|, [y —1|) < ¢}
lies in U. If (x, y) is in I*— (M,0M,u...) and §,, S,, ... is the sequence
such that for each positive integer n», S, is the component of I*— M,
which contains (x, y), then there is a positive integer n such that §, is
a subset of U and f[B(8,)] is in V. §, will be the desired open set W.
On the other hand, suppose » is the least positive integer such that (z, y)
is in M,. In case n > 1, let E be the square component of I*— M, _, which
contains (x,y) (if » =1, let E = I?). f, is continuous on Cl(E)nM,,
so let ¢, > 0 be such that if (s, t) is in Cl(E)nM, and max(lz—s|, [y—1t|)
< ¢,, then f,(s,t) is in V. First, suppose (z, ¥) is on an edge of I*. Let
R’ = {(s, t)) max(lx—s|, ly—1?|) < min(e, ¢,)}. If (z,y) is not a corner
of I?, then the technique of part (2) of the proof of the lemma will deter-
mine four points P,, P,, P;, and P, with («, y) between P, and P, on an
edge of I* such that O(P,, P,, P,, P,) lies in R'nM, and is the boundary
with respect to I* of an open (with respect to I*) set W which contains
(%, y). W will be the desired open set. If (z, y) is a corner of I?, then the
techniques of part (3) of the proof of the lemma will determine three
points P,, P,, and P4 such that C(P,, P,, P;) will be the boundary with
respect to I of the desired open set W. Now, suppose (z, ¥) is not on an
edge of I°. If (x, y) is also on the edge of some square component of I*— M, ,
then let ¢; > 0 be such that if F is a component of I*— M, with (x, y)
on its edge and (s, ) is' a point of Cl(F)nM,,, such that max(|z—s]|,
ly—1t|) < ¢3, thenf, (s, t)isin V. Let ¢ = min(cy, ¢,, ¢5) and.let B = {(s, ?)|
max(lz—s|, [y—1t]) < ¢}. Now, let C be the appropriate simple closed
curve constructed in the proof of the lemma. The interior W of C contains
(@, y), lies in. U, and. f[B(W)] is a subset of V. Thus f is peripherally conti-
nuous and a connectivity function.

Since the real functions g, used in the construction of f were from I
onto I, the function f is clearly dense in I*x I.

Comments. An argument similar to that given for the theorem in [1]
will show that if f is a connectivity function from I® into I and f is totally
discontinuous, then its graph must be dense in some open subset of I* X I.
Therefore, in constructing a totally discontinuous connectivity function
f from I? into I, any difficulty incurred in actually making f dense in
I* x I is unavoidable.

In [3] Cornette showed that there is a space (an explosion set in
the plane) which is the range of a connectivity function with domain I
but not the range of a connectivity function with domain I?, and. in a paper
given at the 1968 conference on point set topology at The University
of Houston he raised the question as to whether it is true that if n is a
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positive integer, there is a space which is the range of a connectivity
function with domain I™ but not the range of a connectivity function
with domain I™*'. That question is not answered in this paper, but con-
sider the following

THEOREM. If f is a connectivity function from I into I which is dense
in I X I, then the graph of f is the range of a connectivity function with domain I
but not the range of a connectivity function with domain I°.

Proof. Suppose G is the graph of a connectivity function from I
into I which is dense in I X I and f is a connectivity function from I2
onto @, Suppose x is a point of I* and R, and R, are circular regions of
radius } with centers z and f(x), respectively. Notice that R,NnG is totally
disconnected. Since f is peripherally continuous, there is an open subset
R of R, which contains (», y) and is such that f[B(R)] is a subset of R,.
B(R) must have a non-degenerate component C’. f(C') is a connected
subset of R,N@G, so it must contain just one point 2. Let C be the com-
ponent of f~!(z2) which has C’ as a subset. From Theorem 2 of [4] it follows
that C is closed. Let ¥ be a point of I*— C, d, be the minimum distance
from y to a point of C, w be a point of C at a distance d, from y, and d,
be the diameter of C. Let U be a circular region with center w and radius
less than }d, and }d,. Let V be an open subset of U which contains w
and is such that f[B(V)] is a subset of R,. There is a connected open
set V' which contains w, lies in U and has a connected boundary which
is a subset of B(V). Since B(V’) is connected and f[B(V’)] lies in R,NG,
f[B(V')] must contain just one point; and since B(V’) intersects C,
f[B(V')] = (2). Therefore, CUB(V') is a connected subset of f~!(z),
but it contains a point on the segment from w to y which does not belong
to C. This is a contradiction.

Since G is a connected separable metric space, it follows from Cornette’s
theorem that it is the range of a connectivity function with domain I.

Since it has been established that there is a connectivity function
from I® into I which is dense in I* X I, it would be interesting if the pre-
vions theorem could be extended to show that the graph of such a function
is not the range of a connectivity function with domain I® (it is the range
of a connectivity function with domain I*?). This author has not even
been able to show that the particular example constructed in this paper
has this property. (P 716)
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