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LIE DERIVATIVES OF SECTORFORM FIELDS

BY

IVAN KOLAR (BRNO)

White [9] introduced recently a useful concept of sector r-form, which
generalizes the classical 1-forms to the case of the iterated tangent bundles.
In the first part of the present paper, we develop a systematic theory of Lie
differentiation of arbitrary sectorform fields (in [9], this question is studied
only for those special sectorform fields that coincide with the classical
covariant tensors). Our approach is based on a recent definition of the
generalized Lie derivative and on the theory of prolongation functors [4].
Another important tool is an original idea of a T-natural transformation,
which gives a simple construction of the prolongations of vector fields. Our
second aim is to show that certain maps analogous to sector r-forms can be
defined on the fibre bundle of all k-dimensional velocities of order r. Our
construction is based on a reduction procedure dealing with the iterations of
a prolongation functor of rather general type. All manifolds and maps are
assumed to be infinitely differentiable.

1. T-natural transformations. Let M be the category of all manifolds and
maps, and FM the category of fibred manifolds. A functor F: M - FM
transforming any manifold M into a fibred manifold py: FM — M and any
map f: M — N into a fibred manifold morphism Ff: FM = FN over f is
said to be a prolongation functor if it satisfies two simple additional condi-
tions of locality and regularity [4]. Any vector field £ on M is prolonged
into a vector field F¢ on FM, the flow of which is the prolongation of the
flow of ¢, ie, '

(D expt(F&) = F(exp{)

(see [8]). On the other hand, £ is a map of M into TM and one can
construct F¢: FM — FTM. For F = T, we deduced that T¢ = iy, 0 T¢, where
iy: TTM — TTM is the classical canonical involution on TTM (see [5]).
From the categorical point of view, i is a natural transformation of the
functor TT into itself. We are going to study a generalization of such a
situation. Let n,,: TM — M be the bundle projection of the tangent bundle.
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DErFINITION 1. A natural transformation i: FT — TF satisfying
Fry = mpp Oy
is called a T-natural transformation of F if
2 F¢ =iyoOF¢

for any manifold M and any vector field £ on M.

Consider the functor T of k-dimensional velocities of order r (see [1]),
ie, Ty M is the fibred manifold of all r-jets of R* into M with source 0 and

(X N)Jog) =jo(fog)
for any g: R”* - M and f: M — N. Libermann [6] introduced a map

iv: T TM—-TTUM
as follows. Any Be TM is tangent to a curve y(t),
B= glo ?(®),
so that any Ae Ty TM is of the form
A =ﬁ,(§loy(u, t)), ueR*.
Then one defines
G) ire(4) = ng v, D) TR M.

ProrosiTioN 1. i: Ty T— TT; is a T-natural transformation of T;.
Proof. Obviously,

n,;M(iu(V)) =Jov(u, 0) = (T{ 7u)(4)-
For every f: M — N, we have
0
(T )l A) = 5] (5t ) = in( 77 (),

Further, let ¢,(x) be the flow of a vector field &, so that

0
é(x) = Eo(Pr(x)'

For any X =j,g(u)e Ty M we have

0
(TOX =T, (5L @ (g(u)))-
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On the other hand,
expt (T7 §)(X) = (T 0)(X) = 5 @, (9 (w)).

Hence

0
(T H(X) = 5| (/o (gw)
0
If j: GT —» TG is another T-natural transformation of a prolongation
functor G, we have
Giy: GFTM - GTFM  and  jgy: GTFM — TGFM.
Hence we can construct
4 ky :=Jjrm0Giy: GFTM — TGFM.
PropPosITION 2. k is a T-natural transformation of GF.
Proof. Obviously,
Fﬂu =7tpMOiM and GTIM =nGMOjM
imply
GF“M = anu OGiM = NGrM Oj’.-M OGiM.

Further,
Jrm ©Giy OGFE = jpp 0G(ipg 0 FE) = jppy 0G(FE) = GFE.

By iteration, any T-natural transformation i of F induces a T-natural
transformation i": F, T — TF, of the r-th iterated functor

F,=F .. F.

rtimes

If we take F = T, then the canonical involution i: TT — TT induces a T-
natural transformation i": T, T — TT,. (White has shown [9] that the group
of all permutations of r+1 letters acts naturally on the (r+ 1)-st tangent
bundle T,,, M. Using (4) we find easily that our T-natural transformation
iv: T, ;M — T, M coincides with one of these permutations.)

2. Lie derivatives of sectorform fields. Some recent results suggest that
the basic situation for the Lie differentiation is the following one [5]. Given
two manifolds M and N, a map f: M — N, a vector field £ on M and a
vector field # on N, the Lie derivative of f with respect to £ and n is defined
by

5 L&, nf:=Tfoé—nof: M—TN.
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This is a so-called vector field along f. Using flows [2], we can express
L&, n)f as

¢

(6) LéE nf =5 exp(—tn)o foexpté.
0

Given a real-valued map f: M — R, we have
Tf: TM - TR =R x R,

and the second component of: TM — R of Tf is called the differential of f.
Consider a 1-form w on a manifold M, which can be interpreted as a map
w: TM — R. Then the classical Lie derivative L, w coincides with the second
component of L(TE, 0) w, where 0 means the zero vector field on R (see [4]).
Using TE =i, 0T¢, we find

Consider the iterated r-th tangent bundle 7, M. We have r canonical
projections

Tnr,_,_m: TM-T_ M, k=0,..r-1,

r—k-

and T,M is a vector bundle with respect to any of these projections.
According to White [9], a map A: (T, M), — R is called a sector r-form at
xe M if it is a linear morphism with respect to all r vector bundle structures.
Let T* M — M denote the fibre bundle of all sector r-forms on M (see [9]).
A sectorform field on M is a section A": M — T;* M which can be interpreted
as a map A": TM—R. If £ is a vector field on M, then

0) L(T.E,004: TM — TR.

DerFINITION 2. The Lie derivative L; A" is the second component of (7).

By Proposition 2 we obtain

ProposITION 3. We have L, A" = (60A")oiyy 0T ¢.

For any subcomplex K of an (r—1)-dimensional simplex, White con-
structs a fibre bundle T,[M; K] over M and a canonical projection T, M
— T,[M;K]. A sector r-form is called a sector K-form if it is projectable with
respect to the latter projection. Since this construction has a functorial
character, it follows from (6) and (7) that the Lie derivative of a K-sectorform
field is a K-sectorform field. In particular, if K is the subcomplex of all

vertices of an (r— 1)-dimensional simplex, then T,[M; K] coincides with the
Whitney sum @ TM, and a K-sectorform field is a classical r-times co-

variant tensor field on‘ M. In this case, (6) and (7) imply that we get the
classical Lie derivative.



LIE DERIVATIVES OF SECTORFORM FIELDS 75

3. Generalized sectorforms. Let F be a prolongation functor with values
in the category VB of vector bundles. Assume further that F satisfies

(i) (linearity axiom) for any vector bundle q: E - M, Fq: FE - FM is
also a vector bundle, and for any linear morphism

f: (E—~M)—(D—N),

Ff.: (FE— FM)— (FD — FN) is a linear morphism;

(ii) (Pradines’ axiom [7]) if Y— X is a submersion, then FY is a
submersion over Y @ FX with respect to the pullback map.

As a consequence of Pradines’ axiom, if x, y? are some fibre coordinates
on Y, and X, z* are some fibre coordinates on FX, then there are some fibre
coordinates on FY of the form x!, y?, z° w.

Consider the r-th iteration F, of F. Then we have r canonical projec-
tions

kaFr-k’lM: FrM—’F'_lM, k_—‘O,...,r—l,

and F, M is a vector bundle with respect to any of these projections. A map
A: (F, M), — R is called an (F, r)-form if A is a linear morphism with respect
to all vector bundle structures. We are going to deduce the coordinate
expression of an (F, r)-form. Given some local coordinates x on M, let X}
be some additional fibre coordinates on FM. On F, M, we denote by x', X}}
the coordinates induced from F; M by pgy: F; M — FM. According to
Pradines’ axiom, the additional coordinates on F, M are X§i, X52, where
the superscript p, corresponds to the fibre dimension of F, M - FM @ FM.
In general, consider a sequence y =(y,, ..., 7,), where y,€ {0, 1}, not all y,
zero, and set |y| to be the number of 1’s in the sequence, and e =(1, 1, ..., 1).
By Pradines’ axiom, we have a pullback projection

(8) FrM_’Fr—lMG')Fr_ZMFr—IM'

On F, M, we define local coordinates x', X;"! for all y as follows. If y, = 0,
then X" is induced by the corresponding coordinate on the first factor of
(8); if y,-, = 0, then X} is induced by the corresponding coordinate on the
second factor of (8) (if both ;._, = 0 =y,, we are on the basis F,_, M of the
Whitney sum (8)), and X2 are the aaaitional coordinates in the fibres of (8).
According to White [9], if

Y= and Y =0, ..., %)

satisfy y;y;’ = 0 for all i (1 <i <), then the join y =y Uy” is defined by y;
= yi+7/. Any expression of the form

}’lu...u‘yk=e

is called a join decomposition of e. By an induction procedure quite similar to
the proof of Theorem 3.2 of [9], one proves
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PRrROPOSITION 4. A map A: (F, M), — R is an (F, r)-form if and only if it
has the coordinate expression
Y1 Yk pl'l Pl'k
® 71u..§vk=eamlmm" le '”Xn ’

where i; = |y;| and the sum is taken over all distinct join decompositions of e.

(9) implies that the set of all (F, r)-forms at xe M is a vector space.
Hence the space of all (F, r)-forms on M is a vector bundle F* M — M. For
any map f: N—-M, f(y) =x,

(F, f)y: (F,N), —(F, M),

is a linear morphism with respect to all r vector bundle structures, so that
Ao(F,f), is an (F, r)form at yeN for any Ae(F,M),. By (9) and the
linearity axiom, the induced map

(F? f)y: (F M), = (F? N),
is linear. Consider the dual vector space
(F, M), := (F? M)z
and the dual map
(F f)y:=(F? f)7: (FN), = (F, M),.

In this way, we obtain a prolongation functor F,: M — VB (the exact proof
follows from the basic facts of the theory of prolongation cofunctors ex-
plained in [3]).

Having a vector field { on M, the Lie derivative L; A" of an (F, r)-form
field A": F,M — R is defined as the second component of L(F,¢, 0)A".

ProPOSITION 5. L: A" is an (F. r)-form field for any &.

Proof. The prolonged flow F,(expt£)transforms any (F, r)-form into an
(F, r)-form. By (9), the derivative of a one-parameter family of (F, r)-forms is
also an (F, r)-form. Then (6) implies our assertion.

If we have a T-natural transformation i: FT — TF and we construct the
induced T-natural transformation i": F, T — TF,, then we deduce in the same
way as in Section 2 that

(10) L A" = (6A")oiyOF,¢.
4. T;-forms. We have
T'!M=®TM and T!f=@®TY,
k k

so that the values of the functor 7;! are in VB. One verifies easily that T;!



LIE DERIVATIVES OF SECTORFORM FIELDS 77

satisfies conditions (i) and (ii) of Section 3. To study Ty by means of (T}!),, we
introduce a map

W: TTM—(T), M

by the following induction. Let t,: R* — R* be the translation u+—u+v,
ueR*. Any XeTT M is of the form X = j,g(u). Then we set

GO =j5'@ot)eT'M and K(X)=jbk ' (Gw), k' =id.

Using local coordinates, we find directly that A" is injective, so that we can
write Ty M < (T;!), M. Moreover, Ty f is the restriction of (7}!), f to Ty M for
any f: M — N. We define a T{-form at xe M to be the restriction of a
(T, r)-form ((T!), M), — R to (Ty M),.. Any local coordinates x' on M induce
fibre coordinates X, X, on Ty M, where a are multi-indices |a| < r correspond-
ing to the partial derivatives on R*. Comparing the notation, we deduce
from (9)

ProprosITION 6. A map (T M), — R is a T{-form if and only if it has the
coordinate expression
(11) > !t X X

lagl+...+lagl=r

where the sum is taken over all distinct sequences of multi-indices satisfying |a,|
+ ...+ =r.

From Section 3 it follows that the set (T7)* M of all T-forms at xe M is
a vector space and

(TyYM=U (TOx M

xeM

is a vector bundle over M. For every f: N— M, f(y) = x, we obtain an
induced linear map (T))t M — (T{) N and the dual constructions lead to a
prolongation functor T;": M — VB.

The Lie derivative L; A" of a T{-form field A": T; M — R is defined as the
second component of L(T{ ¢, 0) A". Using flows, we deduce that L. A" is also
a Ty-form field. In the same way as in Section 3, we find

L{ A" = ((sA')OiMOT:é,

where iy is the T-natural transformation of Proposition 1.
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