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1. Introduction. Let A be a complex unital Banach algebra, i.e. a Banach
algebra with unit satisfying ||1|| = 1. Following Bonsall and Duncan [1] we
call a linear functional f on A a spectral state if

S)=1 and [f(x) <e(x) (xeA),

where ¢(x) stands for the spectral radius of x. The set £2(A4) of all spectral
states of A4 is readily seen to be a convex and weak* compact subset of the
unit sphere in the dual space A* of A. It may happen that Q(A) is empty (see
(1], p. 115); this never occurs in commutative algebras, since each non-zero
multiplicative functional is obviously a spectral state.

By using well-known ideas of the functional analysis we show that if 4
is commutative, then every extreme point of (A) is a non-zero multiplica-
tive functional on A4 and that the weak* closure of ext 2(A) is equal to the
Silov boundary of A. Next we characterize those complex unital Banach
algebras A such that for each subalgebra B of A and each element f in
ext Q(B) there exists an extension f € 2(A) of f. It turns out that the algebras
with the above property are close to the commutative ones. This leads to a
more general statement of the Silov extension theorem.

Throughout this paper all Banach algebras are complex and unital. In
saying that B is a subalgebra of A it is always assumed that B is closed and
contains the unit of 4. If A is commutative, then we write 4(A) for the non-
empty weak* compact set of all non-zero multiplicative functionals on A,
equipped with the (relative) weak* topology. We denote by 4 the image of 4
under the Gelfand homomorphism x — X, where x(h) = h(x), he 4(A). Then
A is a point-separating subalgebra of the Banach algebra C (4(4)) of all
complex-valued continuous functions on 4(A4), and the sup norm ||x||, of
%x€A is equal to the spectral radius of x.

If E is a subset of the dual space of a normed space, then E will always
denote the weak* closure of E.
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2. Spectral states on commutative algebras.

LeMMA 1. If the unital Banach algebra A is commutative, then £2(A)
coincides with the set all functionals of the form

(1) f(x) = [%dp,

where p is a regular Borel probability measure on A(A).

Proof. Every functional of the form (1) is clearly in 2(A4). Conversely,
let f€Q(A). Define

(2) f@=1(x (xeA).

Since |f(%)| < eo(x) and f(1) =1, f is a well-defined functional of norm one
on A. By the Hahn-Banach and Riesz theorems there exists a regular Borel
probability measure satisfying (1).

As a consequence of Lemma 1 we have the following proposition:

ProrosiTION 1. If A is a commutative unital Banach algebra, then 2(A) is
equal to the weak* closed convex hull of A(A).

Proof. By, e.g. [4], Proposition 1.2, every functional of the form (1) is
in co 4(A). On the other hand, 2(A4) o 4(A), so 2(A) =co 4(A).

By the Milman theorem (see, e.g., [4], p. 9), Proposition 1 is equivalent
to the following =~ ‘

ProrosITION 2. If A is a commutative unital Banach algebra, then
ext Q2(A) = A(A).

We recall that the S‘dov boundary of a commutative Banach algebra is
defined as the smallest closed subset of 4(A) on which the absolute value of
each function £e A attains’its maximum. The following observation, which
we use in the sequel, is of independent interest.

ProposiTiON 3. If A is a commutative unital Banach algebra, then the
closure of ext Q(A) is equal to the Silov boundary of A.

Proof. For each f € 2(A) let f be defined by (2). It is clear that f — f is
a one-to-one affine homeomorphism of 2(4) onto the weak* compact
convex set S(A) = {Fe(A, ||:|l.)*: IIFll =1=F()}. It follows immediately
from [4], p. 40, that the Silov boundary of A is carried via this mapping
onto ext S(A4). Since the latter is the image of ext Q(A4), the proof is
complete.

It is now easy to see that the inclusion in Proposition 2 is in general
proper. For example, take the disk algebra /(D). We have

ext (= (D)) =D & D = A( (D))
(for the first equality see, e.g., [4], p. 54).
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3. Spectral states and positive functionals on commutative star algebras.
Now let A be a commutative unital Banach algebra with an involution *. We
recall that a linear functional f on A is called positive, f > 0, if f(x* x) = 0 for
every xeA. It is well known (see, e.g., [5]), p. 284) that each positive
functional is bounded with ||f]| = f(1) and satisfies f(x*) =f(x) as well as
If (%) < f(1) o(x) for every xe A. The set P(A) of all positive functionals of
norm one on A is convex and weak* compact. It is immediate that each
element of P(A) is a spectral state.

It may be interesting to note that the equality P(A4)=Q(A)
occurs if and only if A is symmetric or, equivalently, if and only if
A(A) < P(A). Indeed, the latter condition and Proposition 1 imply £2(A)
=co4(A) < P(A). Conversely, if P(A) = Q(A), then clearly 4(A4) < P(A)
since every non-zero multiplicative functional is in Q(A).

By Lemma 1, every element f of P(4) can be represented by a regular
Borel probability measure on 4(A). However, in the present case a sharper
result is possible. Namely, as Bucy and Maltese showed in [2], ext P(A)
coincides with the weak* compact set P(A4)n4(A) (see also [5], p. 286, for a
simpler proof of this fact). Hence it follows from the Krein-Milman theorem
that there exists a regular Borel probability measure u on P(A)n4(A) such
that

fX)= | Zdp (xeA).

P(A)nA(A)

Moreover, such u is unique, since the algebra A restricted to P(A)n4(A) is
dense in C(4(A4)nP(A4)) by the Stone-Weierstrass theorem.

4. Extensions of spectral states. If B is a subalgebra of a unital Banach
algebra A and if feQ(B), then we call a functional f on A a spectral
extension of f if f|g =f and feQ(A).

The proof of the following lemma is analogous to that of Maltese [3].

LEMMA 2. Let A be a unital Banach algebra and B a subalgebra of A. If
is in ext 2(B), then f can be extended to an element of ext Q(A) if and only if f
has a spectral extension.

Proof. The “only if” part is trivial. Suppose that f has a spectral
extension. It follows that the convex and weak® compact set X defined by

X =1{geQ(A): gls = f}

is non-empty ; therefore, ext X # @ by the Krein-Milman theorem. We will
show that

ext X = Xnext Q(A).

It suffices to prove that X is an extreme subset of £2(4). Suppose ge X and g



114 P. KAJETANOWICZ

=ag; +(1 —a)g, with g;eQ(4), i=1,2 and 0 <a < 1. By restricting the
last equality to B we get

[ =4ls =29,lp+(1—2)g,ls-

Clearly, g;|g€Q(B). By assumption, f is in ext Q(B) and, consequently, g,|p
= g,|g = f, which means that g;e X, i =1, 2, as desired.

LemMmA 3. Let A be a unital Banach algebra and B a subalgebra of A.
Suppose that every . element of ext Q(B) has a spectral extension. Then every

element of ext Q(B) has an extension to an element of ext Q(A)

Proof. Fix feext Q(B) and let {f,) be a net in ext Q(B) such that
f. —f. By assumption and Lemma 2, each f, extends to f, cext Q(A). By
compactness, we can find a subnet | ],',} of |f,! weak* convergent to some g,
the desired extension of f.

The theorem below explains the connection between the existence of
spectral extensions and spectral properties of the algebra in question.

THEOREM 1. Let A be a unital Banach algebra. The following conditions
are equivalent:

(i) for every subalgebra B — A and every f € Q(B) there exists a spectral
extension of f;

(ii) for every subalgebra B = A and every f eext Q(B) there exists a
spectral extension of f ;

(iii) for each xe€ A there exists a commutative subalgebra B — A contain-
ing x and such that for each f eext Q(B) there exists a spectral extension of f ;

(iv) the spectral radius is a seminorm on A.

Proof. The implication (i) = (ii) => (iii) are trivial. That (iv) implies (i)
follows from the definition of a spectral state and from the Hahn-Banach
extension theorem. It remains to show that (iii) implies (iv). For this purpose
it suffices to prove that the spectral radius is subadditive on A. Fix x, ye 4
and let B be a commutative subalgebra of A containing x+y and such that
each element of ext 2(B) has a spectral extension. By Lemma 3, each

heext Q(B) can be extended to a spectral state of 4. By Proposition 3 we
have

o(x+y) = sup {|h(x+y)|: heext Q(B)} <sup {If (x+y)|: feQ(A4)}
<sup {|f(x)|: feR(A)}+sup {|f )): feQ(A)}
<e(x)+e(y)

and the proof is complete.

Denote by Rad A the radical of A. As J. Zemanek showed in [6], the
commutativity of A/Rad 4 is equivalent to the subadditivity of the spectral
radius, thus to the condition (iv) of Theorem 1. (We mention at this point
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that the subadditivity of the spectral radius is an elementary consequence of
the commutativity of A/Rad A4, unlike the inverse implication, the proof of
which demands more advanced techniques.)

The following statement contains the well-known Silov extension
theorem.

THEOREM 2. Let A be a unital Banach algebra. The following conditions
are equivalent:

(i) A/Rad A is commutative,

(ii) for every commutative subalgebra B of A and every element f in
the Silov boundary I'(B) of B there exists a multiplicative linear extension
of [ to A.

Proof. Suppose (i) holds. Obviously, f{Rad A) = 0 for every feQ(A).
The canonical mapping of Q(A/Rad A) onto Q(A) is easily seen to be an
affine weak* homeomorphism. Moreover, multiplicative functionals on
A/Rad A are carried onto multiplicative functionals on 4. Let B be a
commutative subalgebra of 4. From (i) it follows easily that ¢ is a semi-
norm, therefore by Theorem 1 every element of ext Q(B) admits a spectral
extension. This, together with Lemma 3 and Proposition 3, shows that each

feT(B) extends to an element feextQ(A4). Since f can be viewed as an

element of extQ(A/Rad 4), from the commutativity of A/Rad 4 we con-
clude by Proposition 2, that f is multiplicative.

Conversely, suppose (ii) holds. It is easy to see that then the condition
(iii) of Theorem 1 is satisfied. We now apply this theorem and Zemanek’s
result [6] to obtain the commutativity of A/Rad 4.

Remark. It has been shown by Zelazko ([7], Corollary 3) that given a
commutative unital Banach algebra A and a commutative norm- and unit-
preserving Banach superalgebra C of A4, one can extend every functional
fer(A) to a member of I'(C). It is easily seen that this result can be
obtained also by the direct application of our Lemma 3 together with
Proposition 3.

We are indebted to Anzelm Iwanik for his remarks and suggestions
during the preparation of this paper.
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