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CONNECTION BETWEEN SET THEORY
AND THE FIXED POINT PROPERTY

BY

ROMAN MANKA (MOGILNO)

1. Introduction. If f: X — X is a transformation of a set X into itself,
then every point p of X such that p = f(p) is called a fixed point of f. There
are many directions of investigation of the fixed points, mainly the existence
of them, under various conditions on f: X — X. One of these directions is
given by fixed point theorems for transformations of an ordered set into itself
which satisfy some order-theoretical conditions (see, e.g., [11] for a celebrated
study originated by [6]; see also [10]). Another direction consists in investi-
gation of the (topological) fixed point property, i, the property of a
topological space X that every continuous transformation f: X — X has a
fixed point (for an expository article, see, e.g., [1]). The fixed point property
for continua (i.e, connected and compact topological spaces) of the lowest
dimension constitutes a part of this topological investigation.

In [8] I made a suggestion that for this study a primary domain is given
by basic fixed point theorems in ordered sets.

The aim of the present paper is to verify this hypothesis * by stating an
order-theoretical fixed point theorem (Theorem 1 in Section 2) and deriving
from Theorem 1 a fixed point theorem for some Hausdorff continua (The-
orem 2 in Section 3) without any use of the axiom of choice (contrary to the
usual proofs in the literature related to this subject). The final theorems
(Theorems 3-5 in Section 4) give a discussion of the method introduced here,
by Theorem 1, with respect to basic theorems of the elementary set theory.
Theorems 3 and 4 do not also depend on the axiom of choice.

I am deeply grateful to Z. Lipecki for his help during my work on this
paper.

2. A fixed point theorem in partially ordered sets. A partially ordered set
X, with an ordering <, will be called inductively ordered or, shortly, inductive

* The main result of this work was presented at Colloquium on Topology, Eger, Hungary,
August 12, 1983.
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if for every totally ordered subset of X there exists a least upper bound of
this subset in X. Then also the empty set @ has a least upper bound, sup O,
which is a least element in X (so that every inductive set is in particular non-
empty). X will be called acyclically ordered if for every p, re X with p < r the
segment [p, r] = {ge X: p<q <r} is totally ordered.

We shall consider the transformations f: X — X which satisfy the
following two conditions:

(I) p < f(p) implies the existence of ge(p, f(p)] with g < f(q).

(I) g < f(q) for all geY implies supY < f(supY) if there is sup Y.

THEOREM 1. If X is a set inductively and acyclically ordered by a partial
order < and a transformation f: X — X satisfies (1) and (11), then there exists
a fixed point of f.

Proof. Since X is inductive by assumption, the set

(2.1) P,=lqeX: q< f(q9))

is also inductively ordered by the order <, in view of (II). It follows by the
assumed acyclicity of X that for every p < f(p) there exists in P, supremum
of the set [p, f(p)] n P,. Therefore the function

(2.2) @(p) = sup([p, f(p)] " P;), where pePy,

transforms P, into itself. Since p < ¢(p) for all pe P, by (2.1) and (2.2), it
follows (by [3], pp. 434-435) that there exists a fixed point of ¢.
Now it suffices to verify that for every pe P,

(23) p = ¢(p) implies p = f(p).

Suppose, on the contrary, that p # f(p), i.e. (since pe P,) that p < f(p).
Then by (I) and (2.1) there exists ge(p, f (p)] » P,. Hence p < g and, by (2.2),
q < ¢(p). It follows that p < ¢(p), contrary to the predecessor of the implica-
tion (2.3).

3. An application to the topological fixed point property. By a continuum
we mean here an arbitrary non-empty connected and compact Hausdorff
space. Any continuum having exactly two points which do not disconnect it
is said to be an ‘arc (including continua consisting of one point only). A
continuum X is said to be arcwise connected if for any points p, ge X there
exists an arc joining these points in X; X is said to be one-arcwise connected
if the arc is unique in X, and the arc will be denoted by pq.

In this section, X will be an arbitrary one-arcwise connected continuum
such that for every monotone family of arcs ap, = X, te T, there exists be X
such that

U ap. = ab

teT
(such a continuum X is sometimes called a one-arcwise connected nested

continuum).
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The continua considered in [2] belong to the class considered here, by
Lemma 1 in [2] (see also [7], Remark 2, p. 109, for a simple proof in a more
general setting). The following standard example proves that the class of
continua considered here is essentially larger, also in the metric case:

ExampLE 1. A cone over an arbitrary hereditarily indecomposable plane

continuum is a one-arcwise connected nested continuum which is not hered-
itarily unicoherent.

For an arbitrary point ae X, a partial order <, is determined in the
nested continuum X: for any p, ge X

p <,q if and only if ap < aq.

In the order <,, the point a is of course a smallest element of X, and a
set \p,e X: teT} is totally ordered if and only if the family of arcs
wap. < X: te T} is monotone.

LeEMMA. For an arbitrary point ae X, the nested continuum X is inductive-
ly ordered by the order <,.

Proof. Let jap, < X: te T} be a monotone family of arcs so that there

exists be X with () ap, = ab. Then ap, < ab for all te T, and therefore b is an
teT

upper bound of the totally ordered set of points p,e X. To prove that b is the
least upper bound, let ap, < ac for all te T. Then

U ap, < ac,
tweT

the arc ac being closed in X as a compact subset of X, i.e., ab < ac.
Remark. It is stated in the proof of the Lemma that the equality

U ap. = ab implies that b is the supremum in X (with the order <) of the
teT

set \p.e X: teT). The converse also holds, ie., b is the supremum of a set
\p.€X: teT) if and only if the equality () ap, = ab holds.

teT
Indeed, if b is this supremum, then ap, < ab for all te T. Hence, ab being

closed in X, (J ap, < ab. But the closure (J ap, is a subarc ac of ab and
teT teT

ap, S ac for all te T. Thus ac —ab and ¢ is an upper bound of the set
\p.€X: teT]|. Since b is the least upper bound of this set, ¢ = b.

Further, some geometrically intuitive facts will also be needed, concern-
ing another relation between arcs lying in X (which is investigated in [7] in
some more general setting).

Namely, for every two arcs pg, pr < X, with the same initial point, the
association pq < pr is defined by the following formula: pg mpr # {p}, i.e., in
view of the one-arcwise connectedness of X, by the statement that pg N pr is
an arc non-degenerate to the point p, thus a common initial arc of pq and pr.
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The association < is an equivalence relation in the family of all non-
degenerate arcs with the same initial point (see [7], Proposition 2, p. 108),
and of course pq < pr implies pg < pr for p # q.

Since for every arcwise connected continuum K < X

(3.1 g, reK implies gr =< K,
we have
(3.2) p¢K and q, reK imply pq <pr

(the arcwise connectedness can be omitted in (3.2), but it will be needed in
the sequel, in connection with (3.1)). Moreover, _

(3.3) ap S aq and pgq < pr imply ap < ar

(see [7], Proposition 6, p. 108) and it is worth at once noting that, in view of
(3.1), the inclusion ap < ag means that peaq, which is further equivalent to
the equality apu pg = aq, so that, in particular, ap < aq implies pq < aq.

Now the above facts can be applied to the following

THEOREM 2. Every one-arcwise connected nested continuum X with the
partial order <, is an inductively and acyclically ordered set and every
transformation f: X — X such that

(II1) f(pq) is an arcwise connected continuum for each pq,

(IV) for each p # f (p) there is {p} # pq < pf(p) with pq f(pq) = O,
satisfies conditions (I) and (II) in the order <, (thus there exists a fixed point
of f by virtue of Theorem 1).

Proof. By the Lemma, X is inductively ordered in the order <,. The
acyclicity of X follows directly from the one-arcwise connectedness of X,
because for every p <,q the set [p, q] is equal to the arc pq, and the order
<, in pq is the natural order of the arc pq (which can be defined in pq as
<,)

Now conditions (I) and (II) will be verified for the transformation f: X
— X satisfying (III) and (IV) by assumption.

(I) Suppose that

(34 ap £af(p)

so that p # f(p), and hence by (IV) there is ge X such that
(3.9 {p} # pqa = pf (),

(3.6) pq N f(pq) = 9.

It follows, by (3.4) and (3.5), that ap € ag = af(p), and it remains to
prove that aq < af (q).

From (3.6) it follows that p, q ¢ f (pq). Since f (pq) is an arcwise continuum
by (III), we have
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(3.7 qf(p) <qf(q)

and pf (p) < pf(q) in view of (3.2). Since pq < pf (p) (by (3.9)), it follows that
pq < pf (q) by the transitivity of the association <. Hence, by (3.3) and (3.4),
ap < af (q); consequently, pf(q) < af (q). Simultaneously, by (3.3), (3.5 and
(3.7), pq < pf (q). Therefore pq < af (q), thus geaf (), ie., ag < af (9).

(IT) Let {ap,e X: te T} be an arbitrary monotone family with

(3.8) ap. <af (p) for all teT

and let be X be the supremum in X (with the order <, of the set
{p.e X: 1€ T}, ie, by the Remark, let

(3.9) ab =) ap..
teT
Suppose, on the contrary, that the inclusion ab < af (b) does not hold, so
that p, #b for all teT in view of (3.8). Then bé¢af(b), which implies
ba <bf(b) by (3.2). Since b# f(b) and () bp,={b} by (3.9), being

teT

bp, = bf (b) for bp, sufficiently small, by (IV) there exists te T such that
bp. N f(bp,) = . Therefore we infer that even

(3.10) ab f(p,b) = B.

Indeed, in the opposite case, since p.¢f(p.b), we would have
ap, N f (p.b) # @ in view of (3.9). Thus taking in the arc ap, the first point p
belonging to f(p b), the image being a continuum by (III), we would have
p.¢ap. Consequently, p.¢apu f(p.b). But af (p) capu f(p,b) in view of
(3.1) and (III). Hence p,¢af (p,), contrary to (3.8), which proves (3.10).

Consider the continua ab and f(p,b) disjoint by (3.10). By the one-
arcwise connectedness of X, there exists in X a unique arc joining them so
that ab npq = {p} and pqn f(p.b) = {q}, and any arc joining an arbitrary
point of ab with an arbitrary point of f(p,b) contains pq. In particular,
peaf (b), and since b¢af (b) by the assumption on the contrary, we have
p#b. But in view of (3.9), apu pb = ab. Thus taking eventually an arc
p.-b = ab smaller than the arc p, b, and appropriate q'e f(p,- b) instead of g,
it may be supposed without change of notation (in (3.10)) that apnp. b = O.

But then pgnp,b =@ by the definition of the arc pg, and since
qf (p.) < f(p.b) by (3.1) and (III), we have in view of (3.9) and (3.10) also
qf (p.) N p.b = Q. Consequently,

(apupguaf(p))npb=0.

Since af (p,) < ap LU pq L qf (p;) according to (3.1) (in fact, the equality can be
even proved), we obtain p.bnaf(p) = . Hence p,¢af(p,), contradicting
(3.8).

Theorem 2 implies the topological fixed point property of arcwise
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connected hereditarily unicoherent continua [2], because every continuous
transformation f: X — X satisfies of course (III) and (IV). These conditions
are however essentially more general than the continuity as will be shown by
the following

ExampLe 2. Let X be a plane continuum described as the union of the
segment [, with the ends (0, 0) and (1, 0) and segments I, with the ends
(0, 0)and (1, 1/n) for n =1, 2, ... Define f: X — X as follows: let f(p) = p for
pel, and n=1, 2, ..., and for pel,, i.e., for p=(t, 0), where 0 <1 < 1, let
f(p) = (2t, 0) whenever 0 <t <41 and f(p) = (1, 0) whenever 5 <t < 1. Then
all the assumptions of Theorem 2 are satisfied, and the transformation f: X
— X is not continuous (other but related classes of fixed point transforma-
tions, more general than continuous ones, are discussed in the examples of
[9], pp. 125-128).

4. Connection with basic fixed point theorems in partially ordered sets. By
the basic fixed point theorems in partially ordered sets we understand the ones
which can go to make a basis for an introductory discourse of set theory.
Namely, these theorems state the existence of a fixed point of a transforma-
tion f of an inductively ordered set into itself if f is:

1° increasing, i.e., such that f(p) < f(q) whenever p < g (the Knaster-
Tarski theorem [6]; see also [11] and [4]).

2° progressive, i.e, such that p < f(p) for all points p (the fixed point
theorem proved by Bourbaki [3] as a refinement of an idea of Zermelo [13]).

First of all, the following strong connection between these two fixed
point theorems is to be noted (for a transformation f: X — X, a subset
P < X will be called f-invariant if f(P) < P).

THEOREM 3. If a transformation f: X — X of an inductively ordered set X
into itself is progressive or increasing, then an inductive f-invariant subset of X
is determined on which f is both progressive and increasing.

Proof. For f progressive and for an arbitrary point ae X, let P,(a)
denote the common part of all f-invariant subsets P < X which are
inductive and contain the point a (it is worth to realize that
\a, f(a),f(f(a), ...} € P,). Then P;(a) is f-invariant and inductive, being
even a complete lattice as a totally ordered inductive subset of X (by
Theorem 1 of [3]). Moreover, it follows (by the property (P) in [3], p. 434,
and the equality proved at the end of the proof of Theorem ‘1 of [3]) that the
transformation f is increasing and progressive on P (a).

If fis increasing, then f satisfies (II) by a standard argument (see, e.g.,
[4], p. 14) and also f satisfies the condition

(I p < f(p) implies f(p) < f(f(p)
directly by the definition given in 1°. Condition (I') means that the set P,

defined by (2.1) is f-invariant and, by (II), P, is inductive. Thus, in view of
(2.1), f is both progressive and increasing on P,.
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Theorem 3 implies that an exposition of the basic fixed point theorems
in partially ordered sets can be made (without any use of the axiom of
choice) by proving the fixed point theorem for progressive transformations
and deriving from it the fixed point theorem for increasing transformations
or, conversely, by stating the theorem for increasing transformations (in
complete lattices only), and then considering progressive transformations.
Then the basic theorems of elementary set theory, i.e. the Cantor-Bernstein
theorem and the Kuratowski-Zorn lemma, follow easily (see, e.g., [3], [6],
[11], p. 305; see also [10]). It is also to note that the Kuratowski-Zorn
lemma is in a simple equivalence with the conjunction of the axiom of choice
and the fundamental fixed point theorems.

Now the basic fixed point theorems will be compared with Theorem 1.
Every increasing or progressive transformation f: X — X of an ordered set X
into itself satisfies (I') and (II), thus also (I) and (II). Hence Theorem 1 is a
generalization of the basic fixed point theorems under the additional assump-
tion of the acyclicity of the ordered set X.

Further implications of the argument given in Theorem 1 are also
interesting, and the main one seems to be the following

ProBLEM. Extend Theorem 1 to preordered sets, i.e., ordered by a
relation which is reflexive and transitive only, so that it will imply the
topological fixed point theorem [7].

Let us note that a formulation of the theorem [7] in lattice theory is
given in [5]. Thus the above problem requires another order-theoretical
investigation of the theorem [7]. For lattices the following seems to be
interesting, generalizing the classical version of the Knaster-Tarski theorem
[11] by an analogous proof as that for Theorem 1.

THeoreM 4. If X is a complete lattice and a transformation f: X — X
satisfies (I) and (1), then there exists a fixed point of f.

For a set X which is inductively ordered only, as in the basic theorems,
the following generalization of them, and of Theorems 1 and 4, holds (by a
standard application of the Kuratowski-Zorn lemma).

THEOREM 5. If X is an inductively ordered set and a transformation > X
— X satisfies (I) and (I1), then there exists a fixed point of f.

Namely, a maximal element of the set P, (cf. (2.1)) is a fixed point.

Postscript. A kind of acyclically ordered sets, under another name, was
considered in a monograph Set theory with an introduction to descriptive set
theory by K. Kuratowski and A. Mostowski — see the second, completely
revised edition, 1976, p. 84.

The fixed point theorem proved by Bourbaki, the formulation and the
proof as well, does not differ essentially from the one which had been given
by K. Kuratowski in his paper Une méthode d'élimination des nombres
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transfinis des raisonnements mathématiques (Fund. Math. 3 (1922), pp. 76-108;
see p. 83, Théoréme III, and p. 86, Corollaires I and I'; see also p. 77 for
origins of this method). A dual proof of this fixed point theorem can be
derived from the paper of E. Zermelo Beweis, dass jede Menge wohlgeordnet
werden kann (Math. Ann. 59 (1904), pp. 514-516).

Some related, set-theoretical aspects of the fixed point theory were
recently described by N. Brunner in his paper Topologische Maximalprin-
zipien (to appear in Z. Math. Logik Grundlagen Math.) and by the author in
the paper Generalized notion of the supremum (presented at the Sixth Prague
Topological Symposium 1986).
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