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AND ON CERTAIN CLASSES OF ZAHORSKI
BY

S. N. MUKHOPADHYAY (BURDWAN, WEST BENGAL)

1. Zahorski [4] considered a hierarchy of classes «; of functions
(0 <7< 5) and proved that the derivative f’ — finite or infinite — of
continuous function f belongs to the class .#,. He also showed that if f’
is finite everywhere, then f’e.#,, and if further f’ is bounded, then f' e .#,.
In the present paper the above-mentioned properties are studied by
considering Dini derivatives. Also a sufficient condition is obtained
under which a function of the class .#, should belong to the class .#,.

Throughout the paper f will denote a real function defined on the
real line and u(F) will denote the Lebesgue measure of measurable set E.

For convenience of the reader we recall definitions of Zahorski [4].

Definitions. A non-empty subset E of the real line belongs to .#,
(resp. #,) if and only if F is an F -set and every point of F is a bilateral
point of accumulation (resp. condensation) of E. A set E belongs to ./,
if and only if ¥ is an F -set and every one-sided neighbourhood of each
point of F intersects E in a set of positive measure. A set E belongs to
M, if and only if F is an F,-set and there exist a sequence of closed sets

{F,} and a sequence of numbers {7,}, 0 <7, <1, such that E = UPF,

n=1
and, for each zeF, and every ¢ > 0, there is a number ¢(xz, ¢) > 0 satis-

fying the following property: for any two numbers » and h, such that
hhy, > 0, h/hy < ¢, |h+h,| < e(w, ¢), the following relation is true:

y(En(w+7|a’;:r+h+h1)) > ..
1

A set E belongs to #, if and only if Ee #, with 5, > 0 for all .
A function fe; (0 <t<4) if and only if for any real number «
each of the sets {#: f(#) > a} and {x: f(z) < a) belongs to the class ;.

2. THEOREM 1. Let f be such that
(i) for all & limf(x) = f(£), liminff(2) < f(£) < limsupf(x),
-0 : —>§+0

€40
(i) D-f>D*f> D_f,
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(iii) D*f 48 of Baire class 1,

(iv) —oo < DY f < oo holds, except possibly for an enumerable set.

Then Dt fe #,.

Proof. Let a be arbitrary and let zyeE = {#: D*f(x) > a}. Then
D*f(x,) > a. If a = oo, then F is void, and if a = — oo, then FE repre-
sents the whole real line except possibly an enumerable set; hence the
conclusion follows. So we may suppose that « is finite. Assume that there
is a left neighbourhood (#,— 8, #,] of &, such that u(En(x,— 4, x,]) = 0.
Then D' f(x) < a for almost all xe(x,— J, 2,]. Hence, by a result of [2],
the function f(#)—ar would be non-increasing in (x,— d, x,]. Thus
D~ f(%,) < a, whence, by (ii), D*f(x,) < a, which is a contradiction.
Hence E intersects every left neighbourhood of z, in a set of positive
measure. Similarly, F intersects every right neighbourhood of z, in a set
of positive measure. Since D*f is of.Baire class 1, F is an F -set. Thus
Ee¢#,. Similarly, the set {#: D*f(x) < a}e.#,. This completes the proof.

COROLLARY (Zahorski). If f is continuous and if f' exists, finite or
infinite, then f'e M.

If condition (iv) is satisfied, then the proof follows from Theorem 1.
If (iv) is not satisfied, then the proof is similar except that we have to
apply a result of Goldowsky and Tonelli ([3], p. 206) instead that of [2].

LEMMA. Under the hypotheses of Theorem 1, D*f satisfies the mean
value property, i.e., for a << b there is a & such that a < & < b and f(b) —f(a)
— (b—a)D*f(£). ,

Proof. It suffices to suppose that f (d) = f(b) and to show that there
is a & a< £<b, such that DTf(&) = 0. _

If Dtf(x)>0 for all we(a,d), then f is non-decreasing in [a, b],
hence f is constant on [a, d] which proves our assertion. Similarly, if
D*f(x) < 0 for all ze(a, ), then also the assertion follows. So we may
suppose that there are points 2’ and 2’ in (a, b) such that D+f(2’') > 0
and D*f(#"') < 0. Since D*fe #,, it satisfies Darboux property [4] and
hence there is &e(a, b) such that D*f(&) = 0.

THEOREM 2. Under the hypotheses of Theorem 1, if there exists a point
®o at which f'(x,) is finite, then, for every a, a < f'(z,) (resp. a > f’(x,))
the set {w: D*f(x) > a) (resp. {x: D*f(x) < a}) satisfies the following
property: for every ¢ > 0 there ewists an ¢ > O such that for all h and h,
with hhy > 0, h/h, < ¢, |h+h| < e, we have

pIn{z: D¥f(x) > a}) >0 (resp. u(In{x: D*f(x) < a}) > 0),
where I i8 the open interval with the end points xy+h and x,+h+h,..

Proof. Since f'(x,) exists, taking 4 = f'(x,) we can write

(1) f(@o+h) = f(@o)+ Ah+ &, h,
(2) f(@o+h+hy) = f(@o) + A(h+hy) +&2(h+hy),
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wheree, —0and e, > 0ash - 0andh+ h; — 0, respectively. If ¢ = — oo,
then, for any interval I,

uIn{a: D*f(2) > a}) = p(l)
and the theorem is proved. So suppose —oo < a< . Choose 8, 1< 8

< oo. Let ¢> 0 be arbitrary. Suppose hh, > 0, h/h; < c¢. Then h — 0
as h+h, — 0 and hence there is £ > 0 such that

. [A—a —A
(3) 0|32—€1!+|82I<mln( 2 7%)7

whenever |h+h,| < &.
So if hhy > 0, h/h; < ¢ and |h-+hy] < e, we infer from (1), (2) and

(3) that

f(@o+h+hy)—f(2o+h) l‘
hy -

)

h . [A—a —A
< “h‘: lea— 1] 4 |ea] < cleg— 81l-+ 132| < mm‘( 5 %—)7
i.e.

W ath _ f@othih) =S+ _fth_

2 hy 2

Let the open interval with end points ¢y + h and z,+ h + h, be denoted
by I. Then from the lemma we see that there is an 5eI such that

_ f(we+h+hy) —f(#o+h)
D f(n) = i,

and hence, from (4), that a < D*f(5), i.e., neln{z: D*f(x) > a}. Since
D*fe#,, we conclude

u(INn{x: D*f(x) > a}) > 0.

The proof for the set {x: D*f(x) < o} can be completed similarly
by interchanging a and §f.
-COROLLARY (Zahorski). If f has everywhere a finite derivative f’, then
fleds.
THEOREM 3. Let f be such that
(i) f is continuous,
(ii) D*f i8 of Baire class 1,
(iii) — K< D'f< K, 0< K< o,
(iv) D~f > D*f> D_{.
If a point x, is such that f'(x,) exists, then for every a, a < f'(x,) (resp.
a >f'(x,)), the set {x: DT f(x) > a} (resp. {x: D*f(x) < a}) satisfies the
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hollowing property: for every ¢ > 0 there exists € > 0 such that for all h and
f1 with hhy > 0, h/hy < ¢ and |h+hy| < e, we have

pInf Df@) >a) (1 f'(2,) —a )

N 27 2(K+|a)
plIn{z: D*f(z) < a}) _ (1 a—f'(x,) )
resp. >min(—, ————
( P ol 2" 2(E+al) )’
where I ts the open interval with end points x,+h and xy+h+ h,.
Proof. Let a< f'(x,) and let E = {#: D*f(x) >a}. f —oo<a
< — K, then for any interval I there is InE = I aud hence u(INE)/u(I)
> 1/2. So Theorem 3 is proved if a = —oc0 or K = 0. Suppose that «
is finite and K > 0. We may assume that a = 0, for if a # 0 we are to
consider the function f(z)—ax instead of f(»). Put A = f'(x,). Then
2> 0. Let ¢ > 0 be arbitrary. Then, as in Theorem 2, there exists an

¢ > 0 such that for all A and A, with hh; > 0, h/hy<c and |h+h,| < &,
we have

@) 0<

A f(@o+h+hy)—f(2o+h)
.__.< .
2 hy

Let I be the open interval with end points x,+ % and 2o+ h+h,.
Since |D*f(x)| < K for all , f'(») exists almost everywhere in I. Let I,
be the subset of I consisting of points where f’ () exists. Then u(I) = u(I,).
Putting '

®,(2) = n {f(w+%) —f(w)},

we see that the sequence {®, (x)} converges everywhere in I, to the function

f'(z). Since, by the lemma, D¥f satisfies the mean value property, we
have

D, (x) =n{f(w+%)—f(a:)} =D+f(m+%), 0<o<l,

and hence

(0]

2@ = |D*S(o+ )| < X
for all # and all »n. So, by the theorem of Lebesgue,
@) lim (@, (s)ds = f f'(x)dw.

n—»00 IO Io

Since f is continuous, we infer by an easy calculation that

f(wo+h+hy)—f(xo+h) for by >0,

(3) lim [ @, (z)ds =
n—c0 f(@o+h)—f(wo+h+hy) for by <O.
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Hence, from (2) and (3),

LA
hy

(4) {f @+ h+hy) —f (@+R)} = If f (%) dw

= [D*f@)de< [ D*f(x)dv < Eu(InE),
I I~E

and, from (1) and (4),

A u(INE)

0< 2K< il y

thus proving Theorem 3.
If a > f'(z,), the proof is similar.
COROLLARY (Zahorski). If f has a bounded derivative f’, then f'e #,.

Proof. We may suppose a to be finite. Let K > 4 — |a| be such that
If’ (#)] < K for all 2. Now

oo

1
{w: f'(®) >a} = {w: f'(z) > a—i—;}.
n=1
Since f"is of Baire class 1, the set {z: f'(#) >a+1/n} is an F, -get
for each n. Hence

fo: 1@ > at 7} = O P,

m=1

where F,,, is closed for each m. Consequently,

{z: f'(®) > a} = D O Fopps

==l M=l

where F,, is closed for each m and n. Now considering the sequence
{Nmn}, Where ,,, =1/{2n(K + |a|)}, we see that if x,eF,,,, then f' () > a+
+1/n, and so from Theorem 3 we infer that for every ¢ > 0 there is an
e > 0 such that for all » and h, with hh, > 0, h/h; < ¢ and |h+hy| < e,
we have

pIn{: f'@)>a) _ f(@)—a 1

(1) il 2(K+la) ~ 2n(E+]a])’

where I is the interval with end points #,+% and x,+h--k,.

Writing double sequences {F,,} and {7,,} in terms of simple sequ-
ences, we obtain a sequence of closed sets {F,} and a sequence of numbers
{na}, 0 < n, < 1, and hence from (1) we conclude that {z: f'(2) > a}e #,.
Similar argument is applicable for the set {z: f'(z) < a}.
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3. Zahorski proved that the class .#, (or .#,) is identical with the
class of all Darboux Baire 1 functions [4]. Croft [1] has constructed a
lower semicontinuous function which has Darboux property and which
is zero almost everywhere but not identically zero. This shows that there
are functions of the class #, (or #,) which do not belong to .#,. So
it is natural to ask how much stronger a condition should be imposed
on a function f of the class .#, so that f would belong to the class .#,.

We shall prove the following.

THEOREM 4. If fe #, and if for an arbitrary perfect set P of measure
zero the set f(P) does mot contain an interval, then fe #,.

Proof. Choose a arbitrary and fix it. Let E = {x: f(x) > a} and
let wyeE. Assume that there is a right neighbourhood [z,, z,-+ d) of x,
such that u(EN([#,, #,+6)) = 0. The set {w: f(#) < a} is everywhere
dense in (%, z, 1+ J). Since f satisfies Darboux property, there is @, (2, ¥+
+ d) such that f(x,) > f(#,) > a. Let

G = [zy, 31N {z: f(2) >f(m])}

Then @ is non-dense, because if G@ would be dense in some subinterval
of [x,, x,], then such a subinterval would contain no point of continuity
of f, contradicting the fact that f is of Baire class 1. Also since f has Dar-
boux property, G has no isolated .points and (f(wxy),f (wo)) < f(@).
Finally, since G =« En[z,, ,+ ), @ is of measure zero. Let {Q} be the
collection of all non-degenerate components of [z,,#;]—G. Then the
set @ = [#, ,] —{Q°, where Q° is the interior of @ relative to [x,, #,]
and the union extends over all @ e{Q}, is perfect in [x,, #,]. Also since G
is of measure zero, @ is of measure zero. Thus @ is a perfect set of measure
zero and ( f(zy), f(wo)) < f(@). But this contradicts our hypothesis. Hence
we conclude that E intersects every right neighbourhood of #z, in a set
of positive measure. Similarly, F intersects every left neighbourhood
of z, in a set of positive measure. Hence F ¢ #,. Similarly, {z: f(z) < a}
e#y. Thus fedl,.

Remarks. The converse of Theorem 4 is not true. For let P be the
Cantor perfect set in [0,1] and let f be the Cantor increasing function
in [0, 1]. Then P is of measure zero and (0, 1) = f(P). But f is continuous
in [0,1] and hence fe.#,.
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