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1. [n]-Systems. Let (8, F') be a groupoid, i.e., S is a set and F is
a mapping of § X8 into 8. For xzy, ..., z,e8, it is well known that there

are exactly
1 2n —1\
2n—1 "wo)
distinct well-formed formal products E(w,,...,#,) in which each a;

occurs once and in the natural order (cf. [6]). For example, for n = 4,
the five well-formed formal products are:

F(F(F(ml, 2,), $3), w4), F(F(wn F(,, wa)); m4)1

F(F(mu %y)y F (5, w4))a F(wn F(F(‘”z’ %3), w4))’
. F(ml, F(w27 F (w,, m4)))-
If F satisfies
(1) F("?uF(fl’z’“’a)) =F(F(m1,$2)7-’”3)’ L1y By g€l

F is said to be associative and (S, F) is known as a semigroup. Equation
(1) is a rather strong condition as can be seen, for example, in [2], [3],
and [7]. For any n > 1, a particular consequence of (1) is the following:
(C,) For any x,,...,2,¢8, it E(xy,...,»,) and E'(z,,...,2,) are
two well-formed products of z,, ..., @,, then E(x,, ..., 2,) = E (24, ..., 2,)-
In this note we initiate a study of systems (S, ¥) which for a fixed »
not only fail to satisfy (C,) but in fact fail in the strongest possible way.
Definition. We say that (8, F) is an [n]-system if the following
condition is satisfied:
(C,) For any x,,...,2,¢8, if E(zy,...,2,) and E'(z,...,2,) are
any two distinct well-formed products of z,,...,®,, then E(x,,...,,)
#* E'(yy...,2,).
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We give several examples of [n]-systems.

Example 1. n = 3.

a b
a b | b
S = {a, b}, I e
b a | a
Table 1
Example 2. n = 4.

a b ¢ d e f
ale | f|ld|le]|f|d
blel|lflale|f|a
c | e d| e d

8 ={a,b,c,d,e,f}, F: ! s
. diblc|a|b|c|a
e|b|lc|laldblec|a
flble|lajb|ec|a

Table 2

Note that a direct verification that (8, F) is a [4]-system requires
checking (g)-G*‘ = 12960 inequalities.

Of course, if (8, ) is an [n]-system, then (8, F) is also an [m]-system
for any m < n. On the other hand, if

1 2m —1
S
Il<2m_1( - )

then (8, F) clearly can never by an [m]-system. It is not difficult to con-
struct infinite systems which are [n]-systems for every integer n. In
fact, every free groupoid with infinitely many generators is an [n]-system
for every n (also, see [6]). We exhibit a more interesting construction
in the following

Example 3.
8=1{,2,3,...}, F(w’y)Ex’22+[log2”]+2?/a z,yel,

where [2] denotes the greatest integer < z. (S, F) is an [n]-system for
all finite n. A partial table for F is given in Table 3.
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10 | 20 | 22 | 40 | 42
14 | 28 | 30 | 56 | 58
18 | 36 | 38| 72 | 74
22 | 44 | 46 | 88 | 90

8
Gt W N

Table 3

The proof that (8, F) is an [n]-system for every integer n is left
as an exercise for the ambitious reader.

2. Finite [n]-systems. For a given n, it is not at all clear a priori
that a finite [n]-system exists. However, their existence is guaranteed
by the Theorem below and, therefore, the following definition is mean-
ingful:

Definition. For eachn > 2, let S(n) be defined to be the least inte-
ger m such that there exists an [n]-system (8, F') with |8] = m.

We have already noted that

S(n) > 1 (2%—1).

2n —1 n

The main result of this paper is the
THEOREM.
8(2) =1, 8@B)=2, 8(4)=6,
(2)

n—2

)<S(n)<n2 , n>=5.

14 1 (2%—1

2n —1 n

The proof of the theorem will consist of several lemmas. We first
make several remarks. It will be convenient to modify our notation
slightly and make use of the parenthesis free notation of ZX.ukasiewicz
and Tarski [8], [10]. This means essentially removing all the parentheses
and commas in the ordinary well-formed products. For example, the
five products of x,,x,,#;, x, given in Section 1 are now written:

FFFx z,2,02,, FFx,Fr,x,2,, IFzxFz,a,,
Fo,FFa,0,3,, Fu, Fo,Fz;z,.

We remark that in this notation a string F of F’s and #’s is well-
-formed iff when each F is replaced by —1 and each x is replaced by +1,
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all initial partial sums (i. e., partial sums starting from the left-hand
side of F) are < 0, except the last partial sum which is +1 (cf. [9]).
In fact, since for each string of (2n—1) 41’s with sum -1, there is
exactly one cyclic permutation of the string which has all its proper
initial partial sums < 0 (cf. [56], [11]) and since all 2» —1 cyclic permu-

tations are distinet, this shows that of the (2nn—1) possible strings,

1 _
exactly (2nn l) correspond to well-formed products. We shall also

2n—1 n
abbreviate a concatenation of n F’s, i.e., FF...F, by F*. We first show
Levwma 1. \
(3) 8(n) <™.

Proof. Let £ = E(x,, ..., ,) be a well-formed product of z,, ..., z,.
There corresponds to E a unique “generation tree” T'(K) formed in the
obvious way (cf. [4]). For example, the five trees corresponding to the
five possible products of z,, x,, #,, #, are shown in Fig. 1.

E T(E)
FFFG?1$2$B3$4

2

Xy Xy X3 X4

FFx, Fa, 2,7,

A

Xy Xz X3 X4
FFx, x, Fayx,

>

X1 Xg X3 Xa
Fa, FFx, 0y,

>

Xy X9 X3z X
Fg, Fo, Fxy2,

%

Xy X9 Xz X4
Fig. 1

The interpretation of the vertices of the trees as partial products
of the z; is immediate. Now, to each terminal vertex ; of T'(¥) can be
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assigned a binary sequence S8{z;) in the following manner: Start at the
top vertex V of T'(F) and traverse the unique path P down to x;. Let
D = ¥y, Vg ..., ¥, = @; denote the sequence of vertices of P. Then §(z;)
= (8%, .. Sﬁ"_l , where 8; = 0 if the left-hand branch below v; was
taken by P, and 8; =1 if the right-hand branch below v; was taken.
For example, if ¥ = Fx, FFx,x,2,, then

T(E) =
x1 xz xs_ x4

S(,) = (0), 8(z;) =(1,0,0), S(z)=(@1,0,1), 8(z)=(1,1).

We remark that S(x;) depends only on the structure of the part
of E which precedes x;. Also, we note that the binary sequences S(z;),
1<i<n, form an optimal instantaneous binary (Huffman) code (cf.
[17). Fmally, we assign to each sequence S(w;) = (8{,..., 8{)) a value
ulS(x;)) by

124
(4) u(S(@) = 2 821,
j=1

Let X = {0,1,...,n—1}, N =2"2 and T = {(Tyy ..., Ty_y): X;€X}.
Define the binary operation # on 7T XT by

F(@gy s @y_1) Yoy eees Yn—1) = (Roy +-o5 x-1)s
where

Zy+1l(modn) if 4 =0,
2, = Ty if ¢>0is even,

Yriz) if ¢ is odd.
We claim that (T, F) is an [n]-system. To see this, let E(X,, ..., X,)
be-a well-formed formal product of X,,..., X, where X, = (,...
ey T y)y BpjeX, 0SFJ< N-—-1, 1<k<n. Bach X; has the binary
sequence 8(X;) = (8D, ..., 81) associated with it (as defined previously)
with corresponding value y(S (X; )) given by (4). In general, the product

E(X,,...,X,) is an N-tuple (2,...,2y_;). The significance of S(X;)
rests with the following

Fact. Each k, 0 < k< N —1, has a unique representation as
k=j-25+u(8(X;), o0<j<2™4? 1<i<gn.
Further,
Tyt+w, i =0,
@5 if j>0,
where w; is the length of the string of terminal 0’s of S(=;).

(5) 2y =
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The first statement in the Fact is a well-known property of Huffman
codes (cf. [1], [4]); the second follows by an easy induction argument.

As an example, take n = 4 and consider the previously used expres-
sion £ = FX,FFX,X,X,. For this £ we have:

i 8(Xy) p(S(Xy)) t; wy

1 (0) 0 1 1

2 (1,0, 0) 1 3 2

3 (1,0,1) 5 3 0

4 (1, 1) 3 2 0
Table 4

Also, N = 2*"? = 4. We calculate:
FX, X3 = F (@9, Ta1y Tazy Taz) (T30y Tayy Tazy Tag) = (Tg0+1, gy Loy, Xay),
FFX, X Xy = F (@01, T30y Tyyy T31) (T y By1y Tazy Baz) = (Bag+ 2, Lygy T39y Tg1) s
FPX, FFX, X, X, = F (%19 11y Trgy B13) (a9 + 2, gy, T30y 4y)

= (Lo +1, By +2, )y, Ty).

Of course, this result is asserted by the Fact.

Suppose now that E and E are two distinct well-formed formal
products of X, ..., X,, say

E - le.xlFm2X2 coe an_l_Xn_an == (zo’ ceey ZN__I)’
F =FX, FX,... F"n1X, X, = (2,...,2y_1),

where m;, m; > 0. By assumption there is a least 4, 1 <t<m, such
that m; = m;. We can assume without loss of generality that 0 < my
< m; < n. The definition of x shows for some k*

(6) 1(8(X,) = u(8 (X)) = k*,

where 8'(X;) denotes the binary sequence associated with E'. On the
other hand, the definition of w, gives

(7) w; =m;, W = m;.
Hence by (6), (7) and the Fact for j = 0 we have
(8) Zpe= Biot My, 2 = Byo+ iy,

where addition is modulo . Since 0 < m; < m; < n, we get 2. # 2;.(modn).
Consequently, the values of the products E and E' are different. This
shows that (T, F) is an [n]-system. Since |T| = n" =n2"'2, formula
(3) is established. This proves Lemma 1,
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The reader may note that it was not necessary to reduce each com-
ponent of (xy, ..., Zxy_,;) by » but in fact the argument will hold when
we reduce the k*® component x, by only n—[log,k]—1 for % > 0. This
implies the stronger (but less neat)

n—3
(9) Sm)<af[(n—k—1)".
k=0

Let us call an [n]-system (S, F) exact if

8] — _ 1 (2%—1).
n—1 n

We next show that if (8, F) is an exact [n]-system, then = < 3.
This is best possible since Example 1 exhibits an exact [3]-system.
We first require several definitions.

Let (S, F') denote a groupoid. The dual groupoid (S, F) is defined
to have the same underlying set S and a binary operation F on 8 given
by Foy = Fyxz, x,yeS.

For x,,...,x,¢8, we denote by [x,,...,2,] the set of all values of
well-formed products of z,, ..., .. Thus, if (S, F) is an exact
[n]-system, then [z,,...,2,] =8 for any x,,...,%,eS. For e,xe8 we
say that e is a left (right) identity for x if Fex = x (Fre = ). Finally,
we say « has an identity if x has a left or right identity.

LeEMMA 2. Let (S, F) be an exact [n]-system with n > 4. Then mno
element of S has an identity.

Proof. Suppose some z eS8 has an identity. Then « has a left identity
in either (S, F) or (8, F) so we may assume without loss of generality
Fexr = x for some ee8. Consider the sequence of statements (7,), r > 3,
given by:

(T,) If ze[w,y..., x,] and 2z # F" '@, ...x, then ze[®;,Yzy..., Y]
for some y,, ..., ¥;eS with 2 <t <.

(') is certainly valid since ze[x,, ,, 23] and 2z # FFx, x,x, imply
2 = Fx, Fo,05¢[2,, Fr,25]. Let r >3 and assume (7,_,) is true. If
Ze[®yy ..., x,], then 2 = FXY where Xe[x,,...,2;] and Ye[2;,,,...,2,]
for some ¢, 1<i<r. If ¢t <r—1, then ze[®y,...,2;, Y] and we are
done. . Suppose 4 =r—1. Then z = FXz,. But 2z # F'"'z,...2, by
hypothesis, so that X # F"%x,...x,_,. By the induction hypothesis,
Xe[®y, ¥sy..., 9] for some 9,,...,%,e8, where 2<<t<r—1. Hence
Re[®y, Yo, ..y Yy, ©,] and (T,) is established.

Now let z be any element of 8 and define a sequence x,, ..., z, by
Ty =..=2,,=o, ¥, =2 Since (S,F) is an exact [n]-system,
xe8 = [#,,...,%,]. Suppose & # F*'x,...x,. By (T,) we have

(10) Be[®yy Ysgyooey Y] = [m’yzy---’.yt]
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for some ¥,,...,9,eS where 2<t<mn. The sequence ¢,%,¥Ys, ..., Y
has at most » terms and consequently all well-formed products of
€, %, Yy, ..., Yy, must be different (since an [n]-system is also an [m]-system
for any m < u). By (10) we can write ¥ = F™g, F™2y, ... F™y, some
My, ..., m>=0. Since x, =z, we have

(11) FelF™ g, F™2y, ... Fmty't = Fex = x = F™ FexF™y, ... F™y,.

But now we have two distinct well-formed products of ¢, x, ¥5, ..., ¥;
which have the same value; this is a contradiction.

Thus we must have z = F"'z,...2,. Let w =F"2x,...2, ,
= F"*x...2. We have just shown that Fwz = x for all z¢S. Since
n>=4, (8, F) is certainly a [4]-system. But

(12) FwFxFyx = FwlFFrox = ®

which contradicts the assertion that (8, F) is a [4]-system. This proves
the lemma.

LemmaA 3. If (8, F) is an exact [n]-system, then n < 3.
Proof. Assume (8, F) is an exact [n]-system with %> 4. Let

xeS be an arbitrary fixed element and let #, =2, =... = x, = .
Then '
(13) x = FAB,

where Ae[2,...,2,], B =F31m1...F‘bbbe[w1,...,w,,], and a+b =mn.
By Lemma 1, A # x, B # x so that a,b>2. Write

(14) A=FCx,...%, 1>0,

where C # FDx for any DeS. We claim that C = .

For suppose C # #. Then C = FDE for some D = Fliz, ... Flig,
e[®yy ..., 23]y Bel®y,y ..., x,], ¢e=2. Of course, d+e¢+i1+b =a+b = n.
Consider the sequence

(15) Aywl’---ywb+d—1’E7wu-“’xi’B;

Recall that all #; = #. The sequence has length db4+d-+¢+2 < b+
+d+i+e =mn so that all of its distinct well-formed products must be
different. But

(16) x =FAB
= FF'(Cz, ... 2;B
— F*"'\FDEa, ... 5,B
= Fi+iFhg, Fhg, ... Flix,Ex, ... 5; B
_ F""*‘thlFABthévz ... Mag, Bz, ... 2;B
= PV FhFAF g, ... Poo,Fa, ... Fég,Ba, ... 4;B.
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On the other hand,

17) v =FAB
= FAF1g, ... Fou,
= FAF%, ... F°FAB
= FAFz,... FFFCx, ... ;B
= FAF%,... F°FF'FDEx, ... »;B
= FAF g, ... P Ft Fhg, ... Flig,Ex, ... x;B.

However, both of the terminal expressions of (16) and (17) are well-
-formed products from the sequence in (15). Moreover, a comparison
of the initial powers of F' shows that they are distinct. Since they have
the same value x, we have reached a contradiction to assumption
that C # .

Hence, we have shown C = x and, consequently, 4 = F% !z, ... ,.
In the dual groupoid (S, F), # = FBA, where B and A4 are formed from'
B and A Dby replacing all F’s by F’s. The preceding argument may be
applied here to give B = Fu,Fa,... Fo,_,x,. Let H = Fzx, ... Fu,_,%,;
thus B = FzH. Consider the sequence

(18) A,{El,...,wb_z,Fwﬁ,$l,...,$a__l,H.

It contains a4 b = n terms, so that all well-formed products must
be distinet. But

(19) FAH = FF*'g,...x,H
— FF* 'FABux, ... o, H
= F*""AFx Fx,... Fo,_ 0,3, ... v, H
= F*"' AFx, Fo, ... Fx,_,Frzz, ... x,H
and

(20) FAH — FAFs, ... Fu,_ s,
—~ FAFs,... Fu, ,FAB
= FAFz, ... wa_lg’“"lwl ...x,B
= FAFz,... Fo,_F* *Fx,2,... 2, FxH
— FAFg,... Fz, \F**Fuz ..., FaH.

As before, an examination of the two terminal expressions of (19)
and (20) shows that we have constructed two distinct well-formed products
of the sequence in (18) with the same value. This is a contradiction and
the lemma is proved.

For the case n» = 4, Lemma 3 implies S(4) > 6, a fact which was
first proved by M. C. Gray (unpublished). Example 2 shows S(4) < 6.
The values S(2) =1 and S(3) =2 (Example 1) are immediate. These
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observations, together with Lemmas 1 and 3 establish (2) and the The-
orem.

3. Concluding remarks. The reader will no doubt notice that the
bounds on S(n) given in (2) and (9) leave considerable room for improve-
ment. It is not clear which bound is closer to the true order of growth
of S(n). The best upper bound currently known for S(5) is 96 (P 780).
Another question which arises is for which values of m > §(n) can an
[n]-system exist with [S|] = m. For example, if (8, F) is an [n]-system
for some n >4, can |S| be a prime number? (P 781) Presumably, these
and other questions could be answered if more were known in the way
of structure theorems for [n]-systems. In view of the strength of condition
(C,) which defines an [n]-system, it seems quite possible that such the-
orems exist.
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