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MULTIPLICITY TYPE AND SUBALGEBRA STRUCTURE
IN INFINITARY UNIVERSAL ALGEBRAS

BY

MATTHEW GOULD (NASHVILLE, TENNESSEE)

Introduction. This paper is a continuation of the author’s work
[2] on multiplicity type and subalgebra structure. A prior reading of
[2] is recommended for an understanding of the goals, as well as some of
the techniques, of the present paper. A multiplicity type is a transfinite
sequence of cardinals, not all zero. Given a universal algebra (4; F')
and a multiplicity type u = {ug, M1y +ory May -+ )acy, W€ say(*) that
(A F) has multiplicity type u, and we write (A; F)eK (u), provided y >
sup {a|There is an a-ary operation in F'} and, for each a< y, u, = [{feF|
fis a-ary}|. For a multiplicity type u, let T(u) = {S(4; F)|<A; F)eK (u)},
where S(4; F) denotes the family of all carrier-sets of non-void
subalgebras of (A4; F>. For multiplicity types 4 and u' define a quasi-
ordering < and an equivalence = as follows: u < u’ if T(u) < T(4') and
u=pu if T(u) =T (u'). We shall characterize the quasi-ordering among
certain multiplicity types which we call “standard”, and we shall exhibit
a class A of multiplicity types “in normal form”, whereby every standard
multiplicity type will be equivalent to a unique member of 4", and the
ordering among members of A4~ will be precisely the pointwise ordering.
Further, every member of 4" will be greatest in the pointwise ordering of
all standard multiplicity types equivalent to it, and 4" will contain the
class #*, exhibited in [2], of “maximal normal forms” for multiplicity
types of finitary algebras only.

As this paper is an extension of [2], some results of [2] will be adopted
here without proof. Related material on subalgebra structure can be
found in [1] for finitary algebras and in [3] for infinitary algebras. Further
background material can be found in the monograph [5] of Pierce and
the book [4] of Griitzer. Notations used here are those of [4].

(*) Some of these results arc taken from the author’s doctoral thesis 1967,
supervised by Prof. G. Gritzer at The Pennsylvania State University. Futher research
was supported by the National Science Foundation Under Grant GP-8725.
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1. Preliminaries. Most of the results of this section are ready gene-
ralizations of results in [2], and are therefore stated without proof. First
some definitions are needed, largely to establish notation. The symbols u
and u’ will always denote multiplicity types.

Definition. We say that u’ accepts u provided u, = 0 implies dg = 0.
If each accepts the other, then x4 and u’ are termed compatible.

Definition. Let » be an ordinal and m a non-zero cardinal. We
shall denote by e,(m) the multiplicity type having m as its xth entry
and zeroes everywhere else. For simplicity, ¢,(1) will be denoted by e,.

Definition. Let {u4'lieI} be a set of multiplicity types. We write
p = D (uiel) if p, = D (uilieI) for each a. The symbol + will be used
in the usual fashion when |I| = 2.

Definition. The extent of u, an ordinal denoted by e(u), is defined
by e(u) = sup{alu, # 0}. If u,,, # 0, we say that u is closed. We define
an ordinal e*(u) to be e(u)+1 if u is closed, and e(u) otherwise. We set
) =Te(_y—) and call I(x) the length of u. The ordinal b(u) is defined as
follows. If u is not closed and I(u) is a regular cardinal, let b(u) = e(u).
In all other cases, let b(u) be the initial ordinal whose cardinality is the
cardinal successor of I(u).

Definition. We say that u is initial provided u, # 0 implies a is
an initial ordinal. An initial multiplicity type is called standard if it is clo-
sed, or if its length is a regular cardinal. Finally, x4 is called infinitary
if there is some a > w such that u, # 0.

ILLeMMA 1.1.

(i) If u< u'y then u' accepts u.

(ii) If u' accepts u and u, < u, for all a, then u < u'.

(iii) » < 4 implies e, (m) < g;(m) for all m.

(iv) Let a and p be ordinals with a < f, and let {m,|a <y < B} be a set
of cardinals. Then

e D myla <y < A) < Y (e,(my)la <y < ).
(v) If u* and »* (ieI) are multiplicity types with u* < ' for each iel,

then
D(wilie) < Y (vliel).

By a restricted closure system we shall mean a family U of subsets
of a set 4, having the property that whenever 8 < €A and () (X|X ¢B) # 9,
then M (X|XeB)eA. If O+~B < A, then the closure of B, denoted [B],
is defined to be M) (X|X A, X = B). It is easily seen that S(4; F) is a re-
stricted closure system for any algebra {A; F'>. Moreover, we have

THEOREM 1.1. Let U be a restricted closure system of subsets of A, and
let n be a non-zero cardinal. The following are equivalent.
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(i) WeT (u) for some u of length n.
(ii) If O#B< A and B = |J([C]|C < B,0 < |C] <n), then Be¥.

COROLLARY. If u < u' and e(u) is an initial ordinal, then l(u) < 1l(u').

LEMMA 1.2. Every multiplicity type is equivalent to an initial multi-
plicity type. Specifically, u = ou, where (op), = Y (u.l% = @) if a is initial,
and (ou), = 0 otherwise.

The following lemma provides a useful construetion:

LeMmA 1.3. Suppose u is a multiplicity type and a an ordinal with
0< &< pug,. Let A be a set with |[A| = u,, let C = A with |C| = &, and
let peANC Let W = {A}U{B|C & B< A}, and let A, = {BU{p}|BA}.
If po = 0, then WeT (u), and if p, # 0, then W, eT (u).

The following lemma is well-known (for a proof see [3] or [5]):

LEMMA 1.4. Let B < A, where (A; FyeK (u) and u is initial.
(i) [B] = U (Bala < b(u)), where the sets B, are defined as follows:
B, — B. If a = f+1, then

B, = BﬁuU(U(f(Bf,)]feF and f is A-ary)|d < e*(@)).

If a is a limit ordinal, then B, = \J (B,|y < a).
(ii) [[B]] < (IB]+s(n)+Ro)"", where s(u) = 3 (uouta # 0).

2. Technical lemmas. The following two lemmas provide a kind of
calculus for multiplicity types to facilitate the proof of our main result,
Theorem 3.1, which will establish a maximal form for every standard
infinitary multiplicity type.

LeEMMA 2.1. (i) Let A2 and x be ordinals such that 1 is infinite and 1 > »,
and let m be a non-zero cardinal. Then &, (m?) < e, (M) +¢;.

(ii) If 2 18 an infinite ordinal, then &,(2%) = ¢,.

Proof. (i) Let ‘lIeT(ek(mi)), where A is a restricted closure system
of subsets of the set 4, and let a be an ordinal of power m. For each B < 4
with 0 < |B| < %, choose a set B as follows.

If |[B]|<m, let B = [B].

If [[B]| >m, let B be any set such that |B| =m and B < [B].

Enumerate B as {I;o, I;l, ceny I;,,, ...}, 6 < a, with repetition if neces-
sary. For each & < a, define g%: B® — B by ¢B(x) = b, for all zeB®,
where B® denotes the set of all onto members of B*.

If m =1, the lemma is trivial, so assume m > 1. Then by (ii) of
Lemma 1.4, |[B]| < m% Therefore we let % be any map of B* onto [B].

For each 6 < a define g;: A*—> A as follows.

If = {wgy ...,y ...0ed", let B = {m,, ..., #;,...} and g,(x)
= g5 (x). |

Define f*: A*** > A as follows.



112 M. GOULD

If 2 = (@oyeeey@pyeeni Yoyoney Ypyooope AT et B = {mg, ..., @4, ...}
and let

~

fB(?/o’“-’?/y’-“) if {yO""’yy”"}gB’
Zg otherwise.

ffz) =

Finally, noting that x+21 = 4, we let f be any A-ary function with
the property that S(4;f) = S(4;f*)

Letting B = S(4;f, {gs|6 < a}), we have BeT(e,(m)+¢,), and B
= S(4;f*, {g,]0 < a}). We show that A = B.

Let XeW, x5,y,eX,8 <%,y <4, and let B = {z,, ..., x4,...}.

For each d < a, g5(®gy ...y X5, ...) = gs Z(xy, vey &gy ...)eB < [B] € X;
and f* (@gy .-y Tgy+oo; Yoy ooy Yyy ---)e[B] = X. Thus X is closed under f*
and g;, whence X B, so A = B.

Now let XeB. To show that XU it suffices by Theorem 1.1 to
show that X = J([B]lB< X,0< |B| < %).

So let B~ X,0< |B| <

First we show that B < X Let by¢ B. Then b,cg?(B™) < ¢,(B*) < X,

so B c X. l\ow if be[B], then there are y, ¢ B,y < A, such that b = fB(y,,

ey Yyy onn) IE {bo, .3 bgy ... }p<x I8 an enumeration of B, then b = f%(y,,
..,y,,, ) =" (boy .-y bgy .. ey Yoy -++y Yy, ...)eX, and this completes the
proof of (1).

(ii) Setting A = » in (i), we have ¢,(2%) < ¢,(3), so it suffices to show
£, (3) < ¢;, and clearly we need show only that ¢,(2) < ¢;; equivalently,
we show that &;(2) < e¢,,;. To this end, let WeT(e:(2)); A = 8(4; fi, f2),
where f, and f, are A-ary. Define f: A'** - 4 as follows, for all z = (x;
Loy eeey Ty LD AN,

If 2 is constant and f, (z, ..., x,, ...) = @, let f(2) = fo(zg, ..., @, ...).

In all other cases, define

Hil@ey ..oy, ..0) i @ = a,

1) fo(@oy ooy z,y.00) if @ # @,

It is straightforward to verify that A = S(4;f)eT (¢,.,).

LEMMA 2.2. Let u be standard and of infinite length, and let {"uly < b(u)}
be a set of wmultiplicity types. If "u<<u for each vy < b(u), then
2 (uly < b(w) <

Proof. By (v) of Lemma 1.1 it suffices to show that u’ < u, where
= b(u) - p, for each a.

Case 1. Suppose u is closed. Then

2(3 21(14) I pe # 0)

<-2(8a(#a)| po # 0,0 < e(u))+ oy (L(1) - 2 ) = 1
by (ii) of Lemma 2.1.
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Case 2. Suppose u is not closed and I(u) is regular. Then b(u) = e(u)
= e*(u). If e(u) = w, the result follows from the /™ representation given
in [2], so assume e(u) > w. For simplicity we assume also that u, = 0;
the other case is analogous.

Let L = {AMlo <1< e(u) and u; # 0}, and choose pairwise disjoint
sets B,, A¢L, such that E, < {y|lo <y < e(u)}, |E;] = l(u), and infE, > A.

Also, le some felL.

Using Lemma 1.1, we have

po= M-FZ(sz(l(u))lm # 0) < ptep(llu) *Z &l lleL)
= p+ Y (eal@)iAe L) < p+ (D (eadae By MeL)

<ut )l lo <y <ep)<p+ap.
Now, by Lemma 2.1, u is equivalent to a multiplicity type having no
finite nonzero entries, whence u+pu = u, so u' < pu.

3. Normal form. We now begin to define the normal form of a standard
multiplicity type u of infinite length. For every cardinal m, define w (x, m),
the weight of u with respect to m, by w(u,m) = sup{|4] |<A; FyeK(u)
for some F such that (4; F) is generated by a set of cardinality mj}.
The existence of w(u,m) follows from Lemma 1.4. Moreover, w(u,m)
is actually the cardinality of an algebra of the sort indicated; it suffices
to consider any algebra in K (u), generated by a set B of cardinality m,
such that the sets B, of Lemma 1.4 are as large as possible; this can be
achieved by an algebra absolutely freely generated by B, a word algebra
or algebra of polynomial symbols: (See [4] or [5].) It then follows from
Lemma 1.4 that w(u,m) is the sum of the cardinalities of the B,. Thus,

w(uym) = Y (w,(u, m)la < b(g)),
where w,(u, m), the ath partial weight of u with respect to m, is defined
as wy(u,m) =m, and if « = 41, then

wa(uym) = ws(p, M)+ D) (12 w5, ML < €* ().
If a is a limit ordinal, then w,(x,m) = 3 (w,(x, m)|y < a).
Now, for each » < e*(u), define the multiplicity type u* by u; =0
for A < x and u; = yu,; for A > x«.
Finally, define the multiplicity type u* by us = 0 if u, =0, and
pn = w(u* %) if 0 <x<e*(u)orif » =0 and u, #O.
THEOREM 3.1. If u is standard and infinitary, then u = u*.

Proof. Clearly u < p*, so we show u* < u. Define for each a < e*(u)
the multiplicity type p[a] by ulal, = 0 if u, = 0, and u[a], = w,(u*, x)
if0 < x<e*(u)orif x = 0 and u, # 0. For the sake of simplicity, we assu-
me for the remainder of the proof that 4, = 0. We shall show that u[a] < u
for each a.

8 — Colloquium Mathematicum XXIV.1
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First consider x[0]. Using Lemmas 1.1, 2.1 and 2.2, we have
ul0] = D (e, (2)1x < e* () < £, (Re) + D (e (W) < % < ()
= Dea@lo < x < e*(u)) = Y (o < % < e*(w) < po

Now suppose a = f+1 and u[f]<< p. To show that ula] < u, we
verify the following statements. _
STATEMENT 1. % < A < e*(u) implies wg(u*, ) < wy(u’y 2):
The pr~of is by a trivial transfinite induction on fg.
STATF 0 2. If 4, x < e*(u), then &;(u;- ws(u*, %)*) < p.
We ~nish three cases:
Case 1. u, - wa(p”, %)% < R,. .
Choose some 6 > w, A such that u; # 0. Then
81(#1 wp(p”, % ) &(Ro) = &< .
Case 2 M wﬂ(/ﬁ ’ %) > Ro and p; > wp(u” Q)i:_ )
Then pu, - ws(u", x)* = p; and 50 &, (u; - ws(p" ")‘) = & (m) < p.
Case 3. ;- ws(p* %)t = 8 and u; < we(p®, x)i
Then u, - ws(u*, x)* = wy(u*, x)* and we consider four subcases:

Subcase 3a. 1 < x < w.
Then .&; (ws (1", %)i) = &, (s (u*, %)) < &, (wp (0", %)) < u[fl< p.
Subcase 3b. A< » and % > w
Using (i) of Lemma 2.1,

Ga(wﬂ 7 ;‘—)i) <S¢ (’wﬂ(‘u“, ’_‘);‘) = Eu(wﬂ(ﬂ”7 ;)) < uplpl< ﬂ;
Subcase 3¢. x < 1 < w.
Usmg Statement 1,

ex(wp (i, %)1) = &3 (10, (4", %)) < &2 (w0 (i, D) < w[B1< .
Subcase 3d. x < 1 and 1>
Using Statement 1 and (1) of Lemma 2.1,

& (wg (p”, w)) = &;(ws (", %) < & (wﬁ(ﬂli i)) <ulpl<p,
and so Statement 2 is proved.

Summing on 1 in Statement 2 and applying Lemma 2.2,

D (ea(ma - w0p (", 2|2 < e*(w) <
Now,
ulal, <w,(u*,») (with equality except for » = 0)

= wy (wy %) + ) (w5 - wa(w, %P4 < e* ()
= wp (", %)+ D (- 0a "y %) < 4 < €* ()
—Z/-‘A wﬂ/" Ve < A < e¥( ))’
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and so, by (iv) of Lemma 1.1,

elpelad) < D (ea(pa - w5 (s ¥V % < 2 < e* () < -

Now, summing on z,

plal = D' (e(plal)lx < e*(u) < p

by Lemma 1.2.
Finally, we consider the case where a is a limit ordinal gnd u[y]<
for all y < a. Since we are assuming u, = 0, we have

e

plaly =0 = ul[yl, for all y <a. T

In all other cases, we have .

plal, = wo(py %) = D (w,(w", W)y < g,
and so

pla] = Dplyly<a)<p
by Lemma 1.2.
Thus we have proved that u[a] < u for all a.
Since

w(p %) = Y (wa(u*, #)a < b(u),
we have

pr =D (plalle <bw) < u

by Lemma 1.2, and the theorem is proved.

THEOREM 3.2. Let u and u’' be compatible and suppose u' is initial
and u is standard and infinitary. Then u' < j if and only if u, < ps for
each x. :

Proof. The “if” statement is immediate from Theorem 3.1. Con-
versely, suppose u’ < u. If u, # 0, then u, # 0 because u’ accepts u, so
choose any set A with |4| = u, and make each ac A the value of a nullary
operation, thereby obtaining {A}eT (u’). Then u’' < py implies {A}eT (u)
and, since A = [@], we have u, = |A| < w(u, 0) = w(u°, 0) = uj.

Now let » > 0 such that u, > 0. If u, < %, then u, < g, is immediate,
$0 suppose x < u,,, and consider C < A, where A is a set of cardinality u,
and |C| = ». By Lemma 1.3 we have WeT(x') if uy = 0, where A =
{A}U{B|C ¢ B < A}. We assume y, = 0; if not, simply choose peA\C
and use in place of A the family A, of Lemma 1.3.

Since u’ < u, we have A = S(A; F) for some (A; F)eK (u). Let F
= {f|feF and f is A-ary for some 1> x}. Note that F # @ because p’'
is initial and I(u’) < 1(u). Let A denote the carrier-set of the subalgebra
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generated by C in the algebra (4 ; F). It is easy to verify that 4 is closed
under F\F, whence 4 = A. Since (4; F) K (u*), we have, by definition
of w(u*, x), that u, = |4| < w(u*, ») = u., and the theorem is proved.

It now follows that (gu*), = u, for initial ordinals x, where pu* is
the initial multiplicity type defined in Lemma 1.2. Therefore, Theorem 3.2
still holds if u* is replaced by ou*. Recalling the class 4™*, defined in [2],
of maximal normal forms for multiplicity types which are not infinitary,
we now define normal form for all standard multiplicity types.

Definition. Let #° = 4™ U {ou*|u is standard and infinitary}.

COROLLARY. Every standard multiplicity type u i8 equivalent to a unique
member of A", which is greatest in the pointwise ordering of all standard
multiplicity types equivalent to u. Among members of A", the ordering is
precisely the pointwise ordering.
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