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1. Let @ be a compact abelian group. For a subset E of its dual
I we define Ty to be the space of all trigonometric polynomials whose
Fourier transform is zero outside E. If S(F) consists of all simple functions
on I" vanishing. outside Z, then the Fourier transformation § is a one-
-to-one map of Ty onto S(E). For f, g in Ty and &, in S(E) let

r9) = [fl@g@ds, <&y =D E@)n0);
G yeI'
then

<8f7 & =<(f, 3—1£>

(note that F~!&(x) =‘%$(7)Y($))-
ye
A function f on @ is called an E-function if f(y) = 0 for all y not
in E. The space L% of all E-functions in L? (1 < p < o0) is a closed linear
subspace -of L?; for p # oo, T is dense in it.

Let ¥y be the restriction of § to Tz and Fz' the restriction of F—*
to S(E). For 1 <p,q< oo we define

18&llp.e = 8UP{IFflly: feTry 1fll, =1},

I8z llp,q = sUP{IF " &2 EeS(E), I8, = 1}.
Then

& ellp,g = SUP{IKES, > : fe Ty £E8(E), [ fl, =1, &l =1},
A8z lp,e = SUP{KTS, E>1 : fe Tg, E8(E), [ flge =1, €l =1},
where ¢' = (¢—1)/¢, 1’ = o0, oo’ =1, and
| fllp,g = inf{|| f+gll,: ge Tz}
is the quotient norm. Further we have formulas

1) ¥ el < 1FE e,
and, for F <« E,

(2) “%F”p,q < II%E”p,q’ ”Fl_i'l”p,q < “sgi'l“p,q .
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2. We say that E < I' belongs to the class §,, (1<p,q< o) if
I llp,q 18 finite and to the class S}, if |Fz'[ly, is finite.

Inequality (1) shows that the clags §,, (1<p,q< o) is larger
than the class 8, , and (2) shows that both classes are hereditary. It is
clear that F is in 8, , or 8, , if and only if it is there for every countable
subset of E.

The reader has probably noticed thht the family S, , is just the
family of Sidon sets. The family of Sidon sets play a special role in this
paper.

In describing the properties of classes S, , and S;,q it is convenient
to use the following functional characterization of them:

THEOREM 1. Suppose that E I’ and 1 < p,q< o0, ¢ # 00, (P, Q)
# (00, 1). The following assertions are equivalent:

(i) EeS, ,-

(ii) The Fourier transform of any E- functwn from LP belongs to 19
(FLE < IUR)).

(iii) For every £el¥(E) there is a function geL” such that § (y) = &(y)
for yeB (9(E) < L¥|g).

THEOREM 1*. Suppose that E c I'" and 1 < p,q<< oo. The following
assertions are equivalent:

(i*) EeSp,-

(11%) The restriction to E of the Fourier transform of any function
from L? is in 19(E) (FL|gp < 11(B)).

(iii*) Any function from 19 (E) is the Fourier transform of an E-fun-
ction from L¥ (19(E) < FLY).

Proof of Theorem 1. The case p #* oo.

(i) = (il). Since Ty is everywhere dense in L%, & can be uniquely
extended to a continuous linear map of L% into I?(E). ‘

(ii) = (iii). By the closed graph theorem it follows that § is a conti-
nuous operator on L% into I?(E); in particular, for & in [?(E) the func-
tional

f=> D f@Ew)
yeE
is continuous on L%, and by the Hahn-Banach theorem it can be exten-
ded to a continuous functional on LP. This extension must be of the
form

i) = f f(@)g(x)da,

yeE
where geL”. Putting f = y (ve E), we have &(y) = g(»).

(iii) = (i). Let £el?(E) and let g, g,eL” be such that &(y) = g(p)
= g,(y) for all yeE. Then g,—ge L z.
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Define an operator A: 17 (E) - L” |[L¥ 5 by putting 4£ = g+ L x-
Notice that, by the closed graph theorem, A is continuous and that for
any £e¢S(FE)

Af =F e+ LR -

Therefore if fe Ty, £¢ S(E) and ||f], = [|¢éll; =1, then
K8fs 1 = Kfy 91 = | [f@)g@ da| < gl < 141,
Q

where ¢ = & '&. Thus EeS,, and the proof is completed.

For the case p = oo the method used in 5.7.3 of [3] (for Sidon sets)
leads to the result I7(E) = § M|;. On account of Theorem 32.46 of [1]
asserting that, for re[l, co) and I'(I') = FL'(Q)-I'(I'), every £el¥(E)
is representable as fﬁlE with feL'(G), there is & = (f*u) 5.

Proof of Theorem 1* (i*) = (ii*). It suffices to prove that if

feL?, then fAlE is a continuous functional on 1?(E) — denote it by F.
In fact, if £¢S(F), then

F(&) = Y i) = Y e0) [f@)y@de
G

veE veE
= [ (X enr(@) f@de = [ (F6)(@)f @ do.
G y<E G
Hence

1F (&) < IF "l fllp < Bl fllp €l (B = IFE llg, ) -

(ii*) = (iii*). By the closed graph theorem, the mapping f — &f|g
is continuous from ILP into I9(E). Hence for &e¢l?(F) the functional

f—>2f(y)é'(y) is of the form
D EQ) = [f@g(@)de
QG

yel'
with ge L¥ . Putting f = yeI", we have £(y) = g(»); in particular, gly) =0
for y¢E. .

(iii*) = (i*). It is easy to show that the operator A from 19(E)
into L% defined as the inverse operator of ¥ has a closed graph. Hence
A is continuous. But for £¢S(E) we have A(£) = §F £ and thus

I Ellpr < 141111 &llg s

which completes the proof of the theorem.
Using an argument similar to that in 5.7.3 of [3] one can prove the
following
Remarks. Statements (i)-(iii) in Theorem 1 are equivalent to:
in the case p =1
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(iv) The Fourier-Stieltjes transform of any E-measure from M (Q)
18 in 1U(E) (FMg < 14(E));

in the case p =

(v) The Fourier transform of amy continuous E-function is in 1%(E)
(FCg = V(E)). |

3. It is known (see [3], 5.7.7) that if

3) 2, [fI < Bifl.

holds for every E-polynomia:le f on @G, then

(4) Ifl, < BVpIfl. (2<p< o),
(5) 171l < 2B fll

holds for every E-polynomial f.
These formulas can be written in the following simple form:

(6) Iz =1y (@2<p< ),
(7) Ly = Lg.

Rudin [4] calls a set E to be of type A(p) if L% = L, (1< p < o),
and shows that" ' )

E is of type A(p) if and only if there is an re[l, p) such that
LE = Lg.

By (6 ) and (7 ) the Sidon sets are of type 4 (p) whenever 1 < p < oo.

Applying the Hausdorff-Young theorem (asserting that FLL < I¥ (E)
for all F<c I and 1 <p<2) in the case 1< p < 2 and the Parseval
equality in the case p = 2 we thus obtain A(p) <= §,, (1 <p<2) and
Alp') =8, 1<¢<2).

In general, if ¢ and p are arbltrary, it may happen that classes S, ,
and S g consist of finite sets only. Let us analyse the situation more
closely. '

If the class S8, , contains an infinite set ¥, then by the general theorem
(cf. [2]) F contains an infinite Sidon subset, and since 8, , is hereditary,
we may assume that ¥ is a Sidon set. Then L} = Lf forall 1<p< o
and hence _

P(E) =FL% < U(E).

But this is possible only if ¢ >2 | |

Thus we see that the class S, , (and so the class S ) with 1 < p < oo
and 1< ¢< 2 consists of finite sets only.

A similar situation occurs for classes Sw ¢ With 1 <¢<2 and S 1Lq
with 2 < g< oo (as in Theorem 1* we can show that if Eequ, then
19(E) c« §L, and if Ee8;,, then I9(F) « FLF).
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It is evident that .
(A) 8p,q S 8p,,q, and S;pqx c S;z-qz’ whenever p, < p, and ¢, < q;.

By the Haugsdorff-Young Theorem and the formula above, it follows
that

B)if2<g< 0 and p> ¢, then Sy, = 8,,, are families of all subd-
sets of I. o _

We illdstrate the situation by the diagrams below. Hatched re-
gions represent “new” classes and so does the interval (},1) of 1/¢-
-axis. Concerning boundary points, to what of neighbouring domains
they belong if it is not denoted in the diagram is to' be read off from (A)
and (B).

_1_ -
g} Sidon sets '¢11'A
1 1
finite finite
sets A(2) sets Alp)
: —
all sets all sets
0 T 1 1 0 0
*
Shq Shq

4. We shall give some additional informations about the classes 8, ,
and Sj ,. .

First we observe that the umion of two sets from the class Sj , is
again in this clags. This is an immediate consequence of Theorem 1*
(iii*), since it suffices to prove it for disjoint sets. We do not know whether
a similar result is true for the classes 8, ,. (P 793)

The Riesz-Thorin interpolation theorem applied to the operator §z'
with domain S(Z) shows that

Jf0<A<L1 and

1 A 1=12 A 1=2
=4 , —=—+ ,
P y 2 P2 9 @1 q:
then : '
S; q > S;pqlnsl*’2,42
Indeed,
1 A 1—2 1 A 1—-2
— =—+ 7 and — =— T g
P y 4 y 23 q A q
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so that
-1 —11A —151-2
15 . < 1512, 1512,

for every subset Z of I', which proves our assertion. Again we do not
know whether a similar result is true for the classes S, ,. (P 794)

A result similar to Theorem 5.7.7 of [3] that Sidon sets are of
A(p)-type is the following

THEOREM 2. If 1< ¢<2 and 1jr =1/q—1/2, then

(1) Sco,q < Sl,r’
(ii) Swqg< M Sp.r-
p>1

Proof. Let EeS, , and let F be a Sidon set with the same cardinal-
ity as E. (We can assume that ¥ is a countable set.) Suppose that feT.
For a > 0 let us define a function f, on G XG by

ful®y9) = DRIy (@)9r (@),

veE
where » is a bijection of ¥ onto F.

By Theorem 1 we can find, for any y<@, a function g,¢L'(G) such
that

Gy (y) = If@)*»y(v)
and

ol < By ( X 16,0)19)" = Bullfles  (By = IBaleso)s

yeE

but then f,(-,y) =f*g,. Hence
[ Vfalw, 9l de < Iflullg < BallflalIfilse
G

and so

Gf Gf (@, )l dwdy < ByllfllIfilc -
On the other hand, f,(#, :)e Tp(z<@). Therefore, by (5),
2B [ |fa(@,9)dy = (fa(@, ) e = 1flEe,
whence ’

2B [[|f.@, )l dydo > |fllis,-
GG '

Applying Fubini’s Theorem we thus have

Ifllzit ey < 2BBuliflllIflag -

If we choose a so that 2(1+a) = ag’, then we obtain ||f||, < 2BB,||fll;.
Thus FeS,, and (i) is true.
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To prove (ii) consider the function f_ (0 < a< 1) defined by
fealm, y) = D F(v) (@)vy (¥).

yeE

The equality f(») = (f_a(*,¥))" (»)d,(y) implies f = f_,(-,y)*g, for
all ye@. Therefore

A1 < 1o DI N < [ 1f—alr, )P do- (B | fle)” (2> 1).
G

Integrating over G we obtain

(8) IAIE < [ [ 1f-al@, 9) dydo- (BylIflle,)""
GG

Clearly, we may suppose p < 2. Then, by (4) and by the Parseval
equality, we have

1f—a(@, M < BVD'|(Foal®@, )Ml = BVD' I flka2a)

so that
f [ 1f-ale, 9" dyde < (BVP'|fllz% )"

By virtue of (8), we obtain

Iflly < BBV IfIBac o llf Iy -
If a is such that 2(1 —a) = aq’, then

Al
(9) Iflly < BB, VD' |fl,
and hence (ii) follows.

5. Now we are going to deal with an arithmetical property of the

sets of §,, and S, for the group of integers Z.
Given a subset E of Z and a positive integer N, we denote by ag ()

the largest integer a such that an arithmetic progression of N terms con-

tains a elements of E.
It is shown by Rudin (see [4], theorem 3.5) that if E is of type A(p)

with p > 2, then
ag(N) < (2B’ N*?,  where B = |[Fz'll,»-
Precisely the same argument holds for any of the classes 8p,. One
can verify that
5.1. If Ee8} ,, then ag(N) < (2BN"P)Y (N =1,2,..., B = [Fz'l,q)-
This, together with (9) and Theorem 2, implies that
5.2. If Ee8,,,, then there is a constant A = A(E) such that

(10) ag(N) < A(logN)?@e-9 (N = 3,4,...).
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Indeed, by (9) and 5.1, we have agz(N)< (2BB,Vp' NVP)", where
r =2¢/(2—q) and 1 < p < . Fix N and take p’ = 2logN with N > 3.
This choice of p’ makes N = ¢'2, and (10) follows for A = (2V2¢2BB,)".
(An analogue of this result for Sidon sets may be found in [4], theorem
3.6.) '

53. If 1< q¢< 2 and 1/r =1/qg—1/2, then
80,0 F N 8,
p>1
Rudin (see [4], theorem 4.11) has shown that if
Iim N°®(N) =0

N-—oo
for each ¢ > 0, then there exists a set E, of type A(q) for every ¢ for which
ag,(N) > @(N) for infinitely many N.
Putting
&(N) = (Iog_N)q/(‘a'—q)H’

we infer that there is a set

Eoe N A®) = N 8pacs N Sy
p>1 p>1

p>1

which is not in 8, , because of 5.2.
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