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0. Introduction. Let G be a compact group and I' a locally compact
Abelian group. Suppose I' is a G-space in the sense that there is a map

G xI'a3(g, x) »gxel

such that g (hx) = (gh) x, ex = x, and g(x+y) = gx+gy for all g, he G and all
x, yeT, e being the neutral element of G. Suppose, moreover, that the action
of G is measurable in the sense that the function G xI'3(g, x) - gxeI' and
all the functions G xI'3(g, y) = gx+yel (xel) are (m x u, p)-measurable,
where m and p are Haar measures on G and I, respectively.

The aim of this paper is to study u-measurable, in various senses
essentially bounded solutions to the functional equation

(0.1) [f(x+gy)dm(g) = f(x)f(») (x,yeD).
G

Two particular cases of this equation have already been the object of
investigations:
1° Cauchy’s functional equation

fx+y)=fx)f(y) (x,yel

resulting from (0.1) upon taking G = Z,, with normalized Haar measure, to
act trivially on T
2° d’Alembert’s functional equation

fx+N+f(x=y)=2f(x)f(y) (x,yel)

resulting from (0.1) if G = Z,, with normalized Haar measure, is taken to act
on I' by the rule 0-x=x, 1'x= —x (xel).
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In either of these cases an arbitrary group I' is a G-space for a group G
of a particularly simple form. Specific groups I' can apparently be realized as
G-spaces for more complicated groups G. A simple example is furnished by
the additive group of complex numbers C which is a Z,-space under the

action
(9, x)— [eXp (% g)] x (keN),

and is also a Tspace if the circle group T is taken to act on C by
multiplication.

Our subsequent considerations will proceed in the following order. First,
we find all u-measurable u-essentially bounded and u-essentially non-zero
solutions of the equation in question. Next, we discuss generalized complex-
valued solutions in the case where G is finite and I is discrete: the identity
(0.1) in this case is only assumed to hold almost everywhere with respect to
certain translation-invariant ideals of subsets of I'. Finally, we study some
generalized solutions whose values lie in commutative semi-simple Banach
algebras. As a result in this last case we obtain a generalization of a theorem
of de Bruijn [2] on almost additive functions.

It should be pointed out that none of our results will essentially depend
on a particular choice of the norming constant m(G). This is due to the fact
that a function f satisfies (0.1) if and only if the function ¢f (¢ > 0) satisfies the
same identity with m replaced by cm.

1. Solutions in ¥*(I). Let £*(I') be the space of all complex u-
measurable p-essentially bounded functions on I', I' the dual group of T
Given yel, put

(L.1) f(x) = [(gx, x)dm(g) (xeT).
G .

Clearly, f is in #*(I'). We claim that f satisfies (0.1). In fact, if x, yeT,
then

(I;f(x +gy)dm(g) = [[[(hx+hgy, x)dm(h)] dm(g)
G G
= g (hx, ¥ [ (I; (hgy, x)dm(g)] dm(h)
= g(hx, X [g(gy, x)dm(g)] dm (h)

= f(x)f(y).

Conversely, we have the following

THEOREM 1.1. Any p-essentially non-zero function in £*(I') satisfying
(0.1) can be represented in the form (1.1) for some yel.
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This theorem is a particular case of the following more general result:

THEOREM 1.2. Let w be a p-essentially non-zero function in *(I'), Q a
subset of I', and f a complex function on Q. Suppose that for each yeQ the
identity

fw(x+gy)dm(g) = f(y)w(x)
G
holds for p-almost all x in I'. Then there exists ye I such that for every yeQ

fy)= cj; (9y, x)dm(g).

Proof. Let A(F) be the space of Fourier transforms of functions in
L' (I') with the norm ||¢|| i, = |lull;, where @ =u: we adopt the following
convention as regards the Fourier transform:

() = (u(x)(x, )du(x)  (rel).
;
Given yeQ, define the function ¢, on I to be

& (x) = g(gy, x)dm(g) (xel).

Note that if ¢pe A (), then s,(peA(f'). In fact, if ¢ =4, then ¢, ¢ is the
Fourier transform of the function

x— fu(x+gy)dm(g) (xel),
G

an element of L'(I).
Let w be the Fourier transform of w regarded as a pseudomeasure on I’
(cf. [1]), ie, W is the linear continuous functional on A(I) defined by

O, 9y = [w(=x)u(du(x) (peA(D), ¢ =1i).
r
We claim that for each yeQ and each ¢e A([)

(1.2 [(e,—f () e]w=0.
In fact, for each Yy e A(I) we have
<[(8y—f(y))¢] W’ '/’> = <W’ &, (p|l’>_f(y) <W’ (P'/’>

= [w(—=x) [g(u *v)(x+gy)dm(g)] du(x)
r .
—f (@) fw(=x)(uxv)(x)dp(x)
r
= [(u*v)(—x) [(I;W(x+gy)dm(g)] dp(x)
!

— ) W @so)(—x)du(x) = 0,
r

where ¢ =4, Yy =, and * stands for convolution.
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Since w is p-essentially non-zero, the support of w is non-void. Let y be
a point in the support of w. From (1.2) we infer that for every yeQ and
every @ € A (I the function (¢,— f (y)) ¢ vanishes at y (cf. [1], Theorem 1.3.1).
Consequently, for all yeQ we have ¢,(x) = f(y), which is the desired
representation.

2. Generalized complex-valued solutions. We begin by recalling certain
concepts and introducing some notation.

An ideal of subsets of a set X is a family J of subsets of X such that

(i) @eJ and X¢3J;

(ii) if AeJ and B < A, then Be J;

(iii) if A, BeJ, then AUBe3J
Here the condition that X ¢ J is not standard.

Let X be a set and J an ideal of subsets of X. If f is a real function on
X, the J-essential supremum of f is defined as

sup, f =inf {ce R: £~ ((c, + o0))e J}.

Two complex functions f and g on X are equal J-almost everywhere (in
symbol, f =.g) if and only if sup;|f—g| =0.
Let I¥(X) be the algebra of all complex functions f on X such that

sup;|f] < + .

lflly = sup,|f| is a pseudonorm on I3 (X), Ny(X) = el (X): lIflly =0} is
an ideal of I°(X), and the quotient algebra I7°(X) = I3 (X)/N4(X) with the
induced norm is, as one easily verifies, a Banach algebra with unit. The
canonical image in /5°(X) of a function fel3(X) will be denoted by [f]5.

If Ais a subset of X and f a function on X, then f|, stands for the
restriction of f to A.

Let H be a discrete Abelian group. Given a function f on H and xe H,
T, f denotes the translaie of f by x.

An ideal J of subsets of H is translation-invariant if A €3 implies
A+xe] for all xeH, where

A+x={yeH: y=a+x, ac A}.
If J is a translation-invariant ideal of subsets of H, fely (H), and xe H,

then the element T,([f]y in I5°(H) is well-defined as the class [T, f];, and
we have

IS glls = T (LS Ill5-

Given a linear continuous functional ¢ on I3°(H) and xe H, T, ¢ stands for
the linear continuous functional om I5°(H) defined by

LELf1) =¢(T(fD) (felRH);

we have, of course, || T, || = ||¢]].
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For the remainder of the paper, we will assume that the group G is
finite and the group I is discrete. The conditions for the action of G to be
measurable will be now vacuous.

THEOREM 2.1. Let J be a translation-invariant ideal of subsets of I', Q a
subset of I', f a function in I3 (I') such that ||f||ly# O and for all yeQ

@n Y fC+gn) =3V f ).

9eG

Then there exists a complex bounded function F on I' such that

2.2) Y, F(x+gy)=F(x)F(y)
geG
Jor all x, yeTI and F|g = fl,.

Proof. Let ¢ be a linear continuous functional on [{°(I') such that
¢([f19 #0. In view of (2.1), we have for all yeQ and all zel'

2 LiT, 1) =M TEST,

geG

whence

Y T é([f1) = SO TECSTY.

9eG

Letting w denote the function x — T.{([f]y), we have for all yeQ

Y T,w=f(w.

geG

By Theorem 1.2, there exists y in I such that

fO»W=3 @y,

geG

for all ye Q. To complete the proof, it suffices to take F to be the function

x— Y (gx, 1)
geG

The function F in the statement of Theorem 2.1 is in general not unique.
Below. we present a theorem assuring the uniqueness of F in the case where
r'\Q is an element of a translation-invariant ideal of subsets of I

THEOREM 2.2. Let 3 be a translation-invariant ideal of subsets of I', and F
a complex bounded function on I satisfying (2.2) for all x, yeI'. Then F is the
only complex bounded function in [F). satisfying (2.2) for all x, yeI'. More-
over, ||F|lo = [|F|lx:

Proof. Let bI' be the Bohr compactification of I, a the canonical
homomorphism from I’ into bI', AP(I') the algebra of all complex almost
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periodic functions on I', and C(bI') the algebra of all complex continuous
functions on bI'. As is known, the mapping

C(bI')'sh—hoaxe AP(IN)

is a Banach algebra isomorphism.

Let ¢ be a linear multiplicative functional on [{(I). The mapping h
— ¢([hoa],) is a linear multiplicative functional on C(bI') and as such it can
be represented in the form h— h(w,) for some w,ebl'. If webl and
he C(bI'), then

(23) h@) = lim TE([hoaly,
a(x) 0 - g

passage to the limit being possible due to the fact that «(I') is dense in brI". It
follows from the latter formula that every almost periodic function f on I is
uniquely determined by its restriction to a subset of I' whose complement
belongs to I and, moreover, ||f||, = ||flls. The uniqueness of F and the
identity ||F|| . = ||F]|. result now from the fact that, by virtue of Theorem 1.1,
any complex bounded function satisfying (2.2) for all x, yerl is a trigono-
metric polynomial on TI.

3. Generalized Banach algebra valued solutions. Let A be a commutative
semi-simple Banach algebra. Suppose @ is a subset of the Gelfand space of A
such that the only element of 4 whose Gelfand transform vanishes at all
points of & is the zero element. Let s(®) be the algebra of all complex
functions on @, equipped with the topology of pointwise convergence. When
¢e® and fes(P), we write (¢, f) for the value of f at ¢. Let o, be the
weak topology on A4 induced by @: o, has for a basis of neighbourhoods of
the origin the sets

{xe A: max [{¢;, x)| <&}
‘1<i<n
with {¢,, ..., ¢,} running over all finite subsets of ® and ¢ running over all
positive numbers. We identify 4 under o, with the topological subalgebra of
s(®) consisting of all restrictions to @ of the Gelfand transforms of elements
of A.
An immediate consequence of Theorems 2.1 and 2.2 is the following

THEOREM 3.1. For each ¢pe @, let 3, and 3, be translation-invariant ideals
of subsets of I', and Q, a subset of I' such that I'\Q,e 3,. Let f be a function
from I into A such that, given ¢pc P,

(i) the function x — {¢$, f(x)) is in lf‘,‘;(f');
(i) |[<¢, S( N3, = O implies [|<¢, f ()5, = O;
(i) for every ye,

G.n 2 K. S +gY)) =3, <8, £ ()<, S 1))

geG
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Then there exists a unique bounded function F from I into s(®) satisfying (2.2)
Jor all x, yerI, such that, for each ¢ P,

(@, F()) =3, <6, F ().

Moreover, for every ¢pe®,

148, F(Dllo = 148, £ (Wl
and if 114, £ (D, # O, then

(P, F(x)) =<, f(x)> for all xeQ,.

Specializing the hypotheses of this theorem, we shall now derive a few
results relating to the situation in which exact solutions of the equation
under study take values in the same Banach algebra as initial generalized
solutions.

THEOREM 3.2. Suppose the unit ball of A is 6,-compact. Let 3 be a
translation-invariant ideal of subsets of I'. For each ¢ ®, let 2, be a subset of
I' with I'\Q € 3, and 3, a translation-invariant ideal of subsets of I'. Let f be
a norm-bounded function from I' into A such that, given ¢ ®,

() 1<, f (), = O implies ||<&, f(-)Mll5 = 0;

(i) (3.1) holds for every ye£,.

Then there exists a unique bounded function F from I into (A, o,) satisfying
(2.2) for all x, yeT, such that, for each ¢ ®,

(p, F(*)) =140, ().
F is bounded in norm and, moreover, for every ¢e®,
I<é, F(OMw = 1<, £ ()=
and if 1<, f (Dl # O, then
(p, F(x)) =<9, f(x)) for all xeQy.

Proof. In view of the preceding theorem, we need only to prove the
existence part.

Let ¢ be a linear multiplicative functional on /[*°(I') and w, the corre-
sponding point in bI" such that (2.3) holds. Since, clearly, for each ¢ €® the
function x — (¢, f(x)) belongs to I¥(I') and is a trigonometric polynomial
modulo N,(I'), the right-hand side of the formula

(3.2) @, F()>=_ lim TE([<h,f (D)) (xeD

a(y) —a x)—wg
makes sense. Reading the proofs to Theorems 2.1 and 2.2 we see that the
assertion will follow once we prove that the function F defined by (3.2) is A-
valued and is bounded in norm. By the compactness hypothesis, all reduces
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to proving that, given xeI', ¢ — (¢, F(x)), an element of s(P), lies in the
closure of f(I).
Suppose a,, ..., a,eC and ¢,, ..., §,€ P satisfy

|2 & fopl <1

for all yerI'. Then, in view of (3.2),
13 & <o Fel < 1
whatever xeI'. Every linear continuous functional on s(®) being of the form
h= 3 o b b

for some ay,...,a,eC and some ¢,, ..., ¢,€P, we reach the conclusion
by utilizing the bipolar theorem.

In the sequel, if ge G and X is a subset of I', we write 2, for the set
{xel': x—gxeZX}; for xeI, we let

x—2X={yel: y=x-s, seX}.

THEOREM 3.3. Let 3 be a translation-invariant ideal of subsets of I', 2 a
subset of I' with I'\Q¢€ 3, such that for each xeI the set
QX)=x-n2n [ (—gx),

g¢eG\le)

is non-void. For every ¢ ®, let 3, be a translation-invariant ideal of subsets of
I'. Let f be a function from I' into A such that, given ¢ ®,

(1) the function x — (¢, f(x)) is in lg’;(l‘);

(i1) [|<, £ (D3, = O implies <, f(x)> =0 for all xeQ;

(iii) (3.1) holds for every yef.
Then there exists a unique bounded function F from I into (A, o,) such that
(2.2) holds for all x, yeI' and Fl|, = f|,.

Proof. Let F be the function from I into s(®) associated with f by the
application of Theorem 3.1. In view of (ii), F coincides with f on Q. Thus all

that we need to prove is that F is A-valued.
Given xel, choose s in £(x), and let t =x—s. We have seQ,

tef, s+gte for all geG\ e}, whence F(s) = f(s), F(t) = f(t), and F(s+gt)
= f(s+gt) for all geG\e]. Consequently,

F(x)=F(s+t)=F(s)F()— ), F(s+gt)
: 9¢G\ie)

=ff@)— Y f(s+g),

9cG\fe}

which yields the desired conclusion.
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THEOREM 3.4. Let 3 be a translation-invariant ideal of subsets of I', Q a
subset of T such that I'\Qe 3. For each ¢ ®, let I, be a translation-invariant
ideal of subsets of I'. Let f be a function from I' into a subgroup B of the

multiplicative group of all invertible elements of A such that, given ¢ € &,
(i) the function x — (¢, f(x)) is in tg';(r);
(1) 1<, f ()l5, # O;
(iii) for every yeQ

D, (1)) =3,8, F (1)) <, f (1)

Then there exists a unique bounded function F from I into (A, 6,) such that
for all x, yeTl'

F(x+y) = F(x)F(y)

and F|, = f|,. The range of F is contained in B.

Proof. Let F be the function from I into s(®) associated with f by the
application of Theorem 3.1. Clearly, F coincides with f on Q. We shall show
that F is B-valued.

Given xer, let y be an element of Q N(2—x). Then x+yeQ, and so

f(x+y)=F(x+y) = F(x)F(y) = F(x) f (),

whence
Fx)=f(x+)f()

The proof is complete.

The following is a generahzatlon of de Bruijn’s theorem mentioned in
the Introduction.

THEOREM 3.5. Let 3 be a translation-invariant ideal of subsets of I', Q a
subset of I' such that I'\Qe 3, and H a locally compact Abelian group. For
each ye H let 3, be a translation-invariant ideal Aof subsets of I'. Let f be a
function from I' into H such that for every ye H and every yeQ

(fC+3),2) =5, (f O, DO, 0)-

Then there exists a unique function F from I into H such that for all x, yeT’
F(x+y) =F(x)+F(y)

and Flg = fl,.

Proof. The theorem follows immediately from the foregoing one upon
identifying H with the group of all continuous characters of H, which is a
subgroup of the group of all 1nvert1ble elements of the Banach algebra l°°(H),
and taking & to be the collection of all evaluation functionals on | ©(H)
corresponding to points in H.

12 - Colloquium Mathematicum LV.1
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