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1. The authors of [3] deal with Mikusinski’s functional equation
(1) fl@+y)f@+y)—fl@)—fy) =0

and they find its general solution. In connexion therewith the following
question presents itself in a natural way: find the general solution of the
functional equation

(2) f@+y)g@+y)—h(z)—k(y) = 0.

Similarly as in [3], we observe that it is worth-while to consider (2)
in an equivalent conditional form

(3) f(z+y) # 0 implies g(z+y) = h(x) +k(y)

which allows us to eliminate the sign of multiplication. Thus we may
consider our equation for structures endowed with one operation “ 4”
only.

Evidently, the character of equation (3) is slightly pathological.
As a matter of fact, since f does not occur on the right-hand side of (3),
the left-hand side expresses simply the fact that « 4y is not a member
of an arbitrarily given set Z which, of course, may always be treated as
a counter-image of {0} for a certain function f. Thus it seems more natural
to consider the functional equation (3) in the form

(4) x+y4¢Z implies g(z+y) = h(z)+k(y),
a8 well as,
. (5) Jf(z +y) # 0 implies f(x+y) = h(z) +k(¥).

Equations (4) and (5) may be referred to as Mikusinski-Pexider
equations in view of their connexion with (1) and with the Pexider func-
tional equation (see [1])

g(z+y) = h(x)+k(y).
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In the present paper we are going to investigate (4) and (5) in a slightly
more general form suggested by the results obtained in [2].

2. Suppose that we are given two abelian groups ¢ and » (both
written additively) and functions

¢:X——@E—> g, Y. Y—Onﬁ» g,

where X and Y are non-empty sets of an arbitrary nature. We are going
to study the conditional equation

(6) ®(x) +¥ (y)¢Z implies g(B(x)+¥(y)) = h(x) +k(y)
with unknown functions
(7) g:9->#, h:X->H, k:Y->H.

Z denotes here an arbitrarily fixed subset of 4.

In order to simplify the statements, in the sequel we exclude the
trivial case Z = ¥ (then, of course, every triple (7) yields a solution of (6)).
Moreover, we shall use the following notation:

Z(p) = {8cF:9(s) =0}, ge#’;
A—ay={a—ay:aed}, Ac%, ae¥9;
A" =9\A, Acég.

Finally, we shall permanently assume that one of the given functions,
say @, is invertible.

LEMMA 1. Equation (6) is equivalent to the following system:
(8) P(2) +P(y)¢Z implies g(D(x) +¥ (y)) = h(z)—h(D(8,— ¥ (9)) +9(80),
(9) k(y) = —hD Y (s,—P(9)) +9(%), ye¥;

8, being an arbitrarily fixed point of Z'.
Proof. Indeed, for fixed y € Y it suffices to put # = &~*(s, — ¥ (y)) in (6).
For s,eZ’, henceforth fixed, we put

(10) G(s) =g(s+3)—9g(s0), H(s) =h{P'(8+8))—g(s), 8¢9,
and
(11) T =7 —s,.
LeEMMA 2. Equation (8) is equivalent to the following one:
(12) tel implies G(t) = H(t+8)—H(8), 8e%;
G, H and T are defined by (10) and (11), respectively.
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Proof. Applying (8), (10) and (11) we obtain
D (x) +¥(y) —8oeT implies G(D(z) + ¥ (y)— 8o) +g(8)
= H(®(2) —80) +9(30) — H(— ¥ (3)),
whence (12) results by setting

t=®@)+¥(Yy)—s%, s=—¥@).

Conversely, it follows from (12), (10) and (11) that

teT implies g(t+8,) —g(8o) = (P (t+8+8o)) — h(DP (s +8,)).
Making the same substitutions as above we obtain:
®(z) +¥(y)¢Z implies g(D(x) +¥(y)) = h(x) —h(D (8o —F(¥))) +9()-

Thus the problem of finding the general solution of (6) may be re-
duced to that for equation (12).

LeMMA 3. The general solution of equation (12) is given by

o(8) for seT,
orbitrary  for 84T,

H(8) =¢(8)+¢c, 8<¥;

G(s) =

@ 8 an arbitrary element of #% which satisfies the condition
(13) p(s+1) =@(8)+o(t), (58)egxT,

whereas c, 18 an arbitrary constant from # and T s defined by (11).
Proof. Putting in (12) s = 0 and ¢, = H(0), we get G(t) = H(t)—¢,
for teT. Thus

H(@)—c, =H(t+8)—co—(H(8)—¢)), (s,8)e¥XxT,
whence (13) is obtained by setting
p(8) = H(8)—c¢,, 8¢%.

Conversely, every pair of functions G and H, defined in the statement
of this lemma, satisfies (12).
Lemmas 1,2 and 3 imply the following

THEOREM 1. The general solution of equation (6) i8 given by

(8) = p(s—8)+c for 8¢Z,

9 arbitrary Jor 8eZ,
h(z) = @(P(x)—8)+c—cpy xeX,

k(y) = —p(—P®)+c0, ye¥,
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where @ is an arbitrary element of #? fulfilling (13) with T defined by (11),
whereas s, is an arbitrarily fixed point of Z', and ¢y, ¢ are arbitrary constants
Jrom .

Remark. A slight modification allows us to get a similar result for
the functional equation

n n n

Y @,(2,)¢Z implies g 2 ®,(w;)) = 2 ha(@;)

im1 i= i=
with unknown functions

g:9->#, h:X—>H, 1=1,...,mn,
where the functions
O X; 29, =1,..,n,

are given, @, is invertible, whereas X;, ¢ =1, ..., n, are any non-empty

sets and Z denotes an arbitrarily fixed subset of 4.

The question about the general solution of (13) becomes now obtrud-
ing itself. In general, one cannot expect ¢ to be additive, since the beha-
viour of solutions depends obviously on Z. Take, for instance, ¥ = # = R,
the additive group of all real numbers, and Z = R\ {a}, aeR. Thus an
arbitrary member ¢ of RE, fulfilling ¢ (0) = 0, satisfies (13).

However, ¢ must be additive whenever the set Z' is not too small.
Namely, we have the following

THEOREM 2. If TN (T —q) # O for every qe %, then every ¢ #7 which
satisfies (13) must be an additive function.

Proof. According to (13), one can write
P81+t —@(81) = @(82+1) —@(82), (81,82, ) eI XIXT.

Taking p, q arbitrary from ¥ and putting 8; = p +¢, 8, = ¢, we have
(14) e(p+a+t)—e(@+9 =9¢@+t)—9(@), (@, ¢eFdXIXT.

On the other hand (cf. also (13)),
(15) e(@p+q+t) =) +olg+t), @ 6NeIXIX(T—9).

Choosing a teT' N (T — q), we infer from (14) and (15) that

p(»+q) =@ +e(@), (D, Pe¥gxY,

which was to be proved.

3. Now we apply these results to the functional equation

(16) f(@ (@) +¥(y)) # 0 implies f(P(2) +¥(y)) = h(z) +k(y),
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where the functions occurring are subjected to the same general condi-
tions as in the preceding section.

THEOREM 3. The general solution of equation (16) is given by

P(8—8)+c for s¢Z,

1) = 0 for seZ,
h(z) = o (P(2) —-s.,)+c—co, re X,
kY) = —o(—P@)+e, ye¥,

where Z is an arbitrarily fized subset of 4, whereas ¢, 8y, ¢, ¢, have the same
meaning as in theorem 1.

In particular, ¢ must be additive whenever there does not exist a qe¥
such that Zu(Z—q) = 4.

Proof. Fix arbitrarily a set Z contained in ¥ and consider equation
(6) with the symbol f instead of g. It suffices to choose from the family
of all solutions of this equation those for which the condition Z < Z(f)
is satisfied.

In the case where X =Y =%, & = ¥ are identities on ¢, and
f =h =k, (16) assumes the form

(17) fls+1) # 0 implies f(s+1) = f(s) +f(3),

which was investigated in [3]. The main result obtained there reads as
follows: f must be additive if ¥ has no subgroups of index 2; if 4 has a
subgroup K of index 2, then either f is additive or f = const ( # 0) on K’
and f = 0 on K.

This result can easily be deduced from our theorem 3 (1).

In fa.ct the condition f = h = k implies

(P(8—80)+0, 3¢Z7
f(8) ={ p(8—8)) +c—¢p, 8€9,
—@(—8)+co 8¢9,

whence
f8) = —p(—8), se9.

Now, if ¢ has no subgroup of index 2, then Z(f)U(Z(f)—¢q) = ¥ is
not possible for any ge% (%) ‘and, consequently, f must be additive. If ¥
has a subgroup K of index 2, then, besides the additive solutions, equation
(17) may also have non-additive solutions f such that Z(f) = K. For

(!) However, only in the case of commutative ¥ and 5. In [3] ¥ and 5 are

not assumed commutative.
(2) (17) implies that Z = Z(f) is a group (cf. [3]).
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every 8,¢K, we have K'—s, = K and thus f satisfies
(18) f(s+t) =f(8), (s,N)e¥xK.

Fix an 8,¢ K and take an arbitrary s¢K. Then ¢ = s,—seK, whence
by (18) we have f(s) = f(8,), i.e. f = const (#0) on K', whereas f = 0
on K by the condition Z(f) = K.
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