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1. Introduction. Let .# be the category of C*-manifolds and let
T: #—~# denote the tangent functor assigning to a manifold M its
tangent bundle 7'M. We shall classify here all the natural transformations
A: T">T™ between arbitrary iterates of 7' (r, n are non-negative integers).
Such a natural transformation will be viewed as a family of smooth maps
Aoy T"M—~T"M, one for each Me .# such that for every f: M—N in
A the following diagram commutes:

: A
Ty — oy
(1.1) TrfJ ™,
¥
T'N— >T"N
(N)

Let 4 be the category whose objects are I =T° T,T* T?...
and whose morphisms are the natural transformations A: T"—T". One
of our results states that to each r > 1 there is associated a sequence of
morphisms ¥": T—T", j =1,...,7, in J which makes T" into the sum
(i. e. co-product) of r copies of T. This means that if n and g"): T—>T",
j =1,...,r, are arbitrarily given, then there exists a unique 4: 11"
in 4 such that all diagrams

T
i g
(1.2) i(j’r)l (3=1,...,7)
N
TT _Z_>Tn

commute.

Remark. Neither the differentiability nor even continuity of the
maps A,y need be assumed; their smoothness will be seen to follow from
the assumption that all diagrams (1.1) commute.
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2. Reduction to Euclidean spaces. Let E, F be Euclidean spaces
and take a smooth map f: E—F. The derivative of f at z,¢ F is a linear
map E—F; its value at ;¢ £ will be denoted by Df(x,; x,) and it will
be called the derivative at z, in the direction x,. (This is linear in 2,.) In
particular, if f is' linear, then Df(xz,; x,) = f(x,).

TE will be identified with E x E so that {x,} x £ is the tangent
space at x,. Consequently, T°E = TE x TE = E* and, in general, T"E
= E”. We have T"f: B*"—>F*"

More precisely

T°f(2,) = f(o),
T'f (w4, %,) = (f(-’”o); Df (x; 931)),
I f (@ -« w2n+1_1)

= (Tnf(wo, cery Bgn_y)y D(T"f)(@gy ovy Tpn_y5 Tyny ..oy wzn+1—1))-

(The last derivative is taken at (2g,...,2,_;) in the direction
(Tyny ooey Tynt1_y).)

The following two lemmas give an explicit computation of 7™f.
If we write x = (g, ..., @;n_,), then it is obvious that T"f(x) is a sequence
of 2" terms

T"f(x) = (60f(), 011 (@), ..., On_1f(2)).

LeMMA 2.1. For every i, 0,f(x) depends only on x4, ..., ®,r_,, where
r 18 the smallest integer such that ¢ < 2". Moreover, 0,f(x) = f(x,), and for
1>20,1>r

(0i+2lf) (wo’ M ] wzl-l-l_l)
= D(0:f) (%0 #15 ..., Zor_15 Lgly Tg1 19002y wzl+2r_l)-

The proof follows directly from the above equalities defining 7™f.
The Lemma allows to calculate each 6;. To do this we take the convention
of sometimes replacing a suffix ¢ =1,2,3,... by the set I = {i,,..., %}
of non-negative integers such that i = 2%+2%+ ... 2% Thus 6, = 6,
Ty = Xyyyy @y = Ty, etc. The above r is then equal to mg.x(ij—i—l).

)
For &k =1,2,... and x,¢ B, the k-th derivative D*f at x, is a k-linear

map E*—F. Its value at (2, ..., z;) will be denoted by D*f(zy; #,; -..; @),
so that this function is linear in each but the first variable.

LevMMA 2.2. We have
1l

0rf (%) ooy @yr_y) = ZZDkf(wo; Tr5 «o-3 2r),
p 1;

k=1

where |I| i3 the cardinality of I and the inner sum ts over all sequences
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(I, ..., I,,) which partition I into k disjoint subsets, and are lexicographically
ordered (i. e. the smallest number in I, i8 smaller than the smallest number
in I, ete.).

The proof of this lemma is by induction on |I|; the inductive step
uses the fact (see Lemma 2.1) that if I is greater than each element of I,
then

(efu{l}f)(wo’ l+l_l D(olf)(wo’ A | wzf_l; wzl’ *e) w21+21‘_1)
17|

= ' V(D f(@g; apy5 .5 @5 ) +
k=1 Ij

k
+ZD"f(wo; Brys -5 Troms .--;'wzk))-
j=1

This is the equality asserted by the Lemma (for I u{l} at place of I).

Note. For I = {i,,...,1,}, the highest derivative appearing in 6,f
is DY f(@o; @5 ...; ;). It follows that if dimE > 2" —1 and @y, ..., &n_,
are linearly independent in E, then for every a,, ..., a;n_, e F' there exists
an f: E—F (in fact a polynomial) such that T"f(2) = (f(@), @1, ---, Gn_,).

LEMMA 2.3. Let r, n be non-negative integers, let E be a Euclidean space
of dimension > 2"—1 and let Agz: T"E—~T"E be a map such that for every
smooth f: E—E the diagram

s
TE— 2 . qng

(2.3.1) T’f[ lrn_r

commutes. Denote by A;: T"E—~E the composite of A g with the projection
T"E = E*"—~E onto the j-th summand, so that Amy = (Roy Ayy oevy Agn_y).
Then

(i) Ao(Boy ovvy Tpp_ ) = @y,
(ii) A (@gy ooy @y ) 21(1 J)x
for every Ic {0,...,n—1}, I #O, where the sum 1is over all

J < {0,...,r—1},J # G, and A(I, J) are real numbers such that A(I, J) = 0
whenever |J| > |I|.

Proof. Abbreviate (@,,...,%yr_,) to @. Then the commutativity
of (2.3.1) implies (on the first component of T™E)

(2.3.2) Aol f(0)y 02f (@), -y Byr_ i f(@)) = f(Ao())
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and (at the remaining components of 7" FE)

(2.3.3)  A7(f(@o), 02f (@), ..., Oyr_,f (@)
= 0;f(Ao(), A41(2), ...y Apn_y(#)) for @ = I < {0,...,n—1}.

Since each 6,f in (2.3.2) contains only derivatives of f, a value of f
enters on the left-hand side of the equality only at z,. Since (2.3.2) holds
for every f, we must have A,(r) = z,, whence (i) is proved.

The right-hand side of (2.3.3) contains only derivatives of f at 1,(z)
= x, but the value of f at x, does not enter. Hence, by the Note preceding
this lemma, it follows that A1; does not depend on the first variable, and we
can rewrite (2.3.3) as

(2.3.4)  A7(0:f(®), ...y Opr_1f(2) = O2f (Tos A1(®), ...; Ayn_y(@))-

For an arbitrary linear f: F—FE, we have 6,f(x)= f(z;), by Lemma 2.2,
Hence for such f the above becomes

AI(f(w1)7 oo ’f(a"zr—l)) = f(ll(‘v))

It is an easy exercise to show that if such identity holds for every
linear f, then 1; must be a linear combination of its variables, so that

AL(Zyy oony @yr_y) =21(17J)mJ’
J

where J < {0,...,7r—1},J # 0.

We claim that A; does not depend on those z; for which |J| > |I|.
Indeed, suppose A; depends on z;, where J = {j,,...,J;} and 1> |I|.
Then in (2.3.4) it would be possible to have an f and « such that the value
of the left-hand side could be altered by suitably altering 60,f(r) and
this could be attained by varying f so that only DV'f(we; @;;...; ;)
undergoes a change (see the Note preceding this lemma). However, the
right-hand side of (2.3.4) contains no derivatives of order higher than |I|.
Hence the right-hand side would remain unchanged. This contradiction
proves that we must have in this case A(I,J) = 0.

LEMMA 2.4. Let Ag: T"E—>T"E be the map in the preceding Lemma.
Suppose further that F is a Euclidean space and fpy: 1" F—T"F a map
such that for every linear f: F—E

B
rp— P L qmp

(2.4.1) T’fl t{’.""f

T"E—————>T"E
(E)



TANGENT FUNCTOR CATEGORY 169

commutes. Then, writing B = (Boy ---y Ban_y), we have
(a) Bo(@oy ooy Byr_y) = @,

(b) Br(@oy +oey @) = D MI, J )y,
J

where A(L, J) are exactly the same numbers which appear in part (ii) of the
previous Lemma.

Proof. Since f is linear, T"f(z) = (f(w,), f(®1), ..., f(®y_,)). Thus
(2.4.1) implies, at the i-th component of T"F that

f(ﬂz’(a"m ) wz"—l)) = }'i(f("”o)y 7f(w2’—1))'

Taking ¢ = 0, we obtain (a), due to the arbitrariness of f, and for
0<i=244..4+2% I ={,...,1}, the above implies

F(Br(@oy +oey @r_y)) = D ML, I)f(2y) = f( X ML, J)a,)
' J J

by the structure of Ajy. Thus (b) follows.

COROLLARY 1. If A: T"—T" is a natural transformation, then its action
on a Euclidean space E is a map Ag: T" E—~T"E satisfying the assertions
of Lemma 2.3. Moreover, the constanis A(I,J) do not depend on E.

Indeed, Lemma 2.4 with iz at place of , shows that the A(I,J)
do not depend on the Euclidean space.

COROLLARY 2. A mnatural transformation A: TT—T" is completely de-
termined by its effect Ag: T"R—T"R on the real line.

Proof. Indeed, if A is known, then, by the above, 4z is known for
each Euclidean space E. Thus for any open subset U — E, denoting by
f: U—E the inclusion map, we have

A
rg—92 g

T'f JT"I.
v
TE——T"'E

AE)

Since 7™ f is injective, there is at most one 4, satisfying the diagram.
Now, if M e #, then there are open injections ¢: UM (U open in a Eucli-
dean space) such that M is covered by the sets ¢(U). For each of these,

Au)

m"U—T1T"U
T' g lT"w .
v
™M ™M
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Here T"¢,T"p are open injections, whence the restriction of A,
to T"p (I" U) is completely determined by A;,. Hence Ay, is determined.

3. The Structure Theorem. For a set 8 let P,8 denote the set of all
non-empty subsets of S. Assume that

(3.1) }»: P*{O,...,’n-—l}XP*{O,...,T—l}—).R

is a given map and define for every Euclidean space E a mapping

(3.2) Ag(2) = (wo’ (@), ..oy 12”—1(‘”)) for @ = (@, @1y ...y Tor_,)
and

(3.3) A(@) = D AI,d)w; for IeP.{0,...,n—1},
< .

the sum being over all JeP, {0,...,7—1}.
STRUCTURE THEOREM. All diagrams

A
rE—® g

(3.4) T"fl an!’

(F)

where f: E—~F i8 an arbitrary smooth map, commute if and only if
(1) A(I,J) = 0 whenever |J| > |I|;

(2) for every I = {0,...,n—1}, |I| >2 and je{0,...,r—1},

I
DAL, (DA, {3}) =0,

1,1,

where the sum i8 over all partitions I = I, ul,;
(3) Jor every |I| > |J|, J = {Jay.-sdi}yy | =2

ML, J) = D) Mg~ (Ga)s {da}) --- Ao~ (s {3

Pped

where the sum i3 over the set ® = D (I, J) of all surjections ¢: I->J.

Proof. Assume that (3.4) commutes. Then (1) follows from Lemma 2.3.
Combining (3.3) with Lemma 2.2, we get

I

(3.5) M(If(@) = DML, I) D) ) DHf(@o; @55 --05 @)
J

k=1 Jj
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Since (3.4) commutes, this must be equal to

Il

(3.6)  0f(Ay(@)y ey gy (@) = D) Y D°f (o5 Ay, (@) .05 Ag,(®).

8=1 Ij

Consider one of the sequences (J,, ..., J,) appearing in (3.5). Choosing
E of dim >2"-1, x,,...,2,y_, independent, and taking a suitable f,
we can assume that D*f(xy; @ g5 e & Jk') =1 and all other derivatives
in (3.5) are zero. Hence (3.5) is A(I, J). But then the only non-zero terms
in (3.6) are those where s = k and where there is a permutation (I,, ..., {)
of (1, ..., k) such that |J; | < |Lil, ..., |}, | < [ (see (3.3) and (1) a.bove)
The sum of these terms, Whlch must be equal to A(I, J), can be written as

(3.7) MI,J) = 32Ty, ) AIgy J3) .. ALy i),

14

where * denotes summation over all sequences (I,, ..., I,) giving a partition
of I (not necessarily in increasing lexicographical order as in (3.6)) and such
that [J4] < [Taly.eey 15 < Tl

Suppose now that J,, ..., J; is a sequence of subsets of {0,...,r—1}
which are not pairwise dlS]Olnt so that J,, nsz #* @ for some m, # m,.
Then the coefficient of D*f(x,; = g5 eees @ Jk) in (3.6) is precisely the sum
in (3.7) but in the present case the sum must be zero, since a derivative
of this kind does not appear at all in (3.5). Thus, with the summation as
in (3.7), for non-disjoint J,,...,J;, we get

(3:8) 0 = 3" ALy Ty, Jo) .. ATy J0).-

I;

It is clear from the way the equations (1), (3.7) and (3.8) were obtained
that they are also sufficient for (3.4) to commute.

It remains then to be shown that (3.7) and (3.8) are equivalent to
assertions (2) and (3) of our Theorem. Indeed, (3) is the special case of (3.7)
in which ¥ = |J| =1 and J,,...,J, are one-element sets. Further, (2)
is the special case of (3.8) in which ¥ =2 and J, = J, = {j}.

Assume now that (2) and (3) hold. To prove (3.7) we have to
show that

3.9)  D'AgT' (), L) - AT, () =D My, Ja) oo ATy, ).

e Ij

To see this, replace each of the ALy, d4)y ooy A(Iy, Ji) by the cor-
responding sum in (3). Let &(I,,...,I;) be the set of all surjections
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¢: I—J such that ¢7'(J,)= I,, ..., " (J;) = I;. Then, rather evidently’
My d) oo 2Ty T = > e~ () Gid) - Ao (D, {Gi})-

ped(Iy,...,Iy)

Applying 2 , a8 in (3.7), to these equalities, we get (3.9).

It remains to prove (3.8). Without loss of generality we may assume
that J,NJ, # @. Consider any sequence (I,,...,I,) appearing in the
summation of (3.8), and denote this sequence henceforth by (I, ..., I,).
Let I=I—(I;u...ul,)and call (I, I,) an admissible pair if I,nI,= @,
I,ul,= Iand |J,| < |I,l, |J.] < |I,|. Then it is clear that (I,, I, I,, ..., 1)
appears in the summation of (3.8) iff (I,, I,) is admissible. Therefore
(3.8) will follow if we prove that

Y ALy, J)AI,, J5) =0,
(I3, Io)

the sum being over all admissible pairs. But this equality is the same
as (3.8) for k¥ = 2, and I instead of I. Thus we have reduced the proof
of (3.8) to the case k = 2.

Thus suppose that k =2 and J, = {a,r;, ..., 7.}, Js = {a, 84, ..., 8,}.
Denoting by @(I;) the set of all surjections I, —~dJ; (¢ =1, 2), we have

ALy, dy) = Z }*(‘Pl—l(a)’ {a'})}*(?’l_l(rl)y {71}) }'((Pl_l(ru)’ {ru})

@1eD(I)
and

A1y, d,) = Z l(%_l(a)a{a});*(‘?’z—l(sl)’{31})---1(‘732—1(31;)7{31’})'

P2 (1)

We have to show that

(3.10) D Ao (a), (@) A(e (a), {a}) Alpr (ry), {r)) -

.o ;'(‘P;l(sv)y {Sv}) =0,

where the first sum is over all partitions I, uI, = I. Given such a parti-
tion, and another ome (I,, I,), and also ¢;e ®(I;), @;e D(I,), let us call
the pairs (@,, @a), (91, 9,) associated if

1° Ii—"Pi—l(a') = ji_‘;’i—l(a'% 1= 1,2, and

2° ¢;|(I;— @i ' (a)) = @; |(I;—¢7'(a)), 4 = 1,2 (equal restrictions).

Writing (¢,, ¢2) ~ (91, @,) in that case, we get an equivalence rela-
tion. It is clear that if (¢,, ¢,) remains in one equivalence class, then the
set I = ¢;'(a) up; !(a) is constant. Furthermore, if the summation of
products (3.10) is performed over just one equivalence class, then in each



TANGENT FUNCTOR CATEGORY 173

of the products only the first two terms vary, and thus we get a multiple

of a sum of type (2), with I and j in (2) replaced by I° and a. Such sum
vanishes by assumption, whence (3.10).

4. Classification theorems.

THEOREM 1. There is a bijective correspondence between the set of all
natural transformations T"—T™ and the set of all maps (3.1) satisfying con-
ditions (1), (2) and (3) in Section 3. Given a map (3.1), the corresponding
natural transformation acts on Euclidean spaces as described by (3.2) and (3.3),

Proof. By Corollary 1 in Section 2 and the Structure Theorem,
the proof reduces to showing that if we have for every Euclidean space
E a map ig: I"E —T"H such that (3.2), (3.3) and (1), (2), (3) in Sec-
tion 3 hold, then there is a unique natural transformation 2 whose actions
on Euclidean spaces are the 4g. The uniqueness is by Corollary 2, Sec-
tion 2, and the existence is obtained as follows.

For U open in E, we have the obvious inclusions 77U =« T"E and
T"U < T"E. Moreover, (3.2) and (3.3) imply that Ag(I"U)< TI"U.
Thus we may define Ay): I" U—T"U by Ay = A x| T7U. It follows that
if f: U-W is a smooth map between open subsets of Euclidean spaces
which can be extended to the corresponding Euclidean spaces, then,
by (3.4),

i
ryg—2 .y

(4.1) T’fl lsz

r n
T W—‘WV)_>T w
commutes. From this it can be seen that the assumption of the extenda-
bility of f beyond U is not essential, for indeed U can be covered by smaller
subsets such that from each of these f is extendable to the whole space,
so the restriction of (4.1) to any of these smaller subsets commutes, and
therefore (4.1) commutes.

If Me #, then M can be covered by neighbourhoods @ which admit
diffeomorphisms y: U—@, where U c F are as above. Thus, for each such
Q, there is a unique Ay such that

A

ry—2 1y
(4.2) Tr'ﬂl jl’nw
e L) e

commutes. Combining (4.1) and (4.2), one sees that A(Q) does not depend

2 — Colloquium Mathematicum XXXI.2
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on the choice of y or U, and also that 44, = 4o, on @, NQ, whenever
the latter set is non-empty. Thus there is a unique map A,n: I"M—>T"M
compatible with all the 44, . Again by (4.1) and (4.2) one sees that the
collection of all Ay, Me #, is a natural transformation.

THEOREM 2. There 18 a bijective correspondence between the set of all
natural transformations T"—T" and the set of all maps

(4.3) A: P, {0,1,...,m—1}x{0,1,...,r—1} >R

satisfying condition (2) of Section 3.

Indeed, a map 4 as above admits a unique extension to a map (3.1)
which satisfies conditions (1), (2) and (3) of the Structure Theorem; it
suffices. to define A(I, J) by conditions (1) and (3).

5. The Co-product Theorem. Let #%'"? be TV—T/*'—... - T" (0<j< 1),
where each arrow is the natural transformation corresponding to the zero-
section of a manifold into its tangent bundle. Define, for j =1, ..., 7,
i%’: TR—>T"R by

(5.1) i((lji')r)(lwo’ #;) = (%, 0y...,0,2,,0,...,0),

where x, is at the 27! place. Then, by Corollary 2, Section 2, it follows
that (5.1) is the action on R of the natural transformation

) it j =1,

U — .
n(j,r).o T'q(o""l) if j =2,3,...,r.

The following theorem states that in the tangent functor category
J the morphisms ¢¥": T—1T", j=1,...,7, make T" into the sum (co-
product) of r copies of 7.

Co-PprODUCT THEOREM. Let r, n > 0 be given. Then for any natural
transformations g9: T—T* j=1,...,r, there is a unique natural trans-
formation A: T"—T" such that for every j =1, ...,r diagram (1.2) com-
mutes.

Proof. We show first that there is at most one A satisfying g
= AoiU" for every j =1, .,.,r. Indeed, if such A exists, then, for every
(g, z,)¢e TR and @ # I < {0,...,n—1} we have, by (5.1)

(5.2) BY (2o, @) = BT, {O}) @y = AL, {j —1})a;.

Thus function (4.3) is determined by the g, j =1,...,r, whence,
by Theorem 2 in Section 4, the natural transformation 4: 77—T™" is unique.
The existence of 1 follows again by Theorem 2 in Section 4, taking (5.2)
as the definition of A. Indeed, condition (2) in Section 3 must then hold
for 1 because it must hold for each of the natural transformations 8.
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In view of the above theorem, a description of all the natural trans-
formations T'— 7" may be of interest. In this case we may by-pass Corol-
lary 2 of Section 2. Indeed, if Ap: TR —T"R is known for a natural
transformation A: T'—T", then from the commutativity of

A
TR —® . mp

(5.3) Tfl lr"f

TM— > T"M
)

for every curve f: R —>M, where Me .#, we obtain A,, on every tangent
vector to M.

Given integers i,j > 0, write i = 2494+ 2%24 |, 4+ 2% j=21429024
+ ... +27% where 0<4:<...<%, 0<),<...<j;, and set

1 if {il,...,’ik}ﬁ{jl,...,jl}=ﬁ,
Y 0 otherwise.

PROPOSITION. A map Ag: TR—>T"R describes in the above way (i. e.

by requiring that all diagrams (5.3) commute) a matural transformation
A: T->T" if and only if

Awy(Boy ®1) = (®gy 21Ty A2®yy ..oy Ay 2y)

for all (xy, #)e TR, where A,, ..., An_, are real mumbers satisfying the
equations

D Ahjay =0, k=2,3,4,...,2"
i+i=k

From this it follows in particular that for n > 1, 4,, ..., 4,n_, belong
in the above sense to a natural transformation TI'—T" iff 4,,..., 4;n-1_,
belong to a natural transformation T--7""'. Moreover, for given 4, ...
eeey Agn—1_;, all the possible continuations A;n-1,... 4,n_, are obtained
by solving the above equations for k¥ = 2"~'41,...,2" which are linear
with respect to the wvariables A;n—1, ..., 4m_,.

'All this can be easily deduced from the preceding results.

6. Invertible transformations.

LEMMA. Suppose A: T"—>T" (r,n >1) i8 a natural transformation
such that A({i}, {j}) #0 for some 0<i<r—1, 0<j<nm—1. Then
AL, {j}) =0 whenever i¢I < {0,...,r—1}.

Proof. We use induction on m = |I|. Thus let m =1 and let ¢¢ I,
that is I = {k} and % + ¢. Condition (2) of the Structure Theorem (Sec-
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tion 3) applied to {k,:} and j yields A({k}, {j})A({¢}, {»}) = 0, whence
A({R}, {5)) = 0.

Assuming that the Lemma is valid for some m > 1, take any I with
1¢1 and |I| = m+1, and put I, = I u{i}. Then in (condition (2) again)

Iy
ATy, () MI, {5}) =0

1, Iy

one of the summands is A(I, {j})A({¢}, {j}). For each other summand we
have that either I, or I, contains 7, and something else. But if, say, i€ I,
and |I,| > 2, then i¢ I, and |I,| < m, whence by the inductive assumption
that summand vanishes. Thus the above sum reduces to the term first
mentioned, and as this must vanish, we have A(I, {j}) = 0.

THEOREM. Let Gp(T,) denote the group of all invertible natural trans-
formations T"—T". Then Gp(T") is a Lie group of dimension n-2"*
and its connected component of identity Gp(T™) is solvable.

Proof. By Theorem 1 in Section 4, we may identify A: T"—T" with
the matrix ¢ Gl(2"—1, R) whose coefficients are A(I,J), @ #1,J
< {0,1,...,n—1}. Composition of natural transformations corresponds
to multiplication of their matrices, i.e. if 4 has an inverse, then so does A.
Conversely, suppose (1) ! exists. It is clear that then for every Euclidean
space Ag: T"E—T"E has an inverse Ag. Moreover, all diagrams (3.4)
commute if Az, Ay are replaced by Az, A (and r = n). Thus, by the
Structure Theorem, the matrix (1)~! satisfies conditions (1), (2) and (3).
By Theorem 1, Section 4, the matrix (1)~' defines a natural transformation,
and the latter is evidently A~'.

It follows that Gp(I™) < GI(2"—1, R) is composed of precisely
those matrices which are invertible and whose coefficients A(I, J) are
subject to the polynomial identities (1), (2) and (3) of the Structure Theorem.
So Gp(T™) is a Lie group.

Let k: Gp(T™) —-Gl(n, R) be the map assigning to A the matrix
(k(A)i; = A({e}, {j}), where i,j =0,...,n—1. The fact that A({i},J)
= 0, whenever |J| > 1, implies that k is a homomorphism. If 2({:}, {j}) # 0
for some i, j, then, by the Lemma above, A({k}, {j}) = 0 for all k¥ £ j.
Thus the matrix k(1) has exactly one non-zero coefficient in each column.
Since A({j},{j}) =1 holds for the identity transformation AeGp(T™),
we conclude that the connected group k(Gi)(T”)) is composed of diagonal
matrices with positive entries on the diagonal.

From A({j}, {j}) > 0 it follows, by the above Lemma, that A(I, {j}) = 0
whenever j¢ I. By indentity (3) of the Structure Theorem, we conclude
that A(I, J) = 0 unless J = I, which means that Gp(T") is composed of
triangular matrices, and is therefore solvable.
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By Theorem 2, Section 4, A: T"—T" is completely determined by
the real numbers A(I, {j}), 9 # I, {j} = {0,1,..., n—1}, and any choice
of such numbers will yield a natural transformation, provided (2) in Sec-
tion 3 is satisfied. But for 1¢ Gp (T™) we must have A(I, {j}) = 0 whenever
j¢ I and these equalities imply condition (2) of Section 3. Therefore, to
obtain an element A< Gp (T") we may choose quite arbitrarily the numbers
A({j}, {j}) > 0 and the A(I, {j}), where je I. As there are n-2""' of these,
dim Gp(T") = n-2""\.

Remark. A slight refinement of the above proof yields that
Gp(T™)|@p (T™) is isomorphic to the full symmetric group on n symbols.

7. Monads. A triple (T, 4, %) is called a monad if A: T* -T and
n: I-T are natural transformations satisfying the diagrams

1

T

nr N T2 Tr] T
(7.1) /
T

and

1"1" [

L SR

"——]T

As well known from category theory, the existence of a monad
(T, 2, n) is equivalent to the existence of a pair of adjoint functors
F: #—>% and G: ¢— .#, where ¥ is some category and F is the left adjoint
of @G, such that T = GoF.

Suppose A: T? —T is a natural transformation. By the Structure
Theorem,

A(R)(wo’ Xyy Byy By) = (a’"o’ A({0}, {0})2, + A ({0}, {1})%)7
where the numbers a = A({0}, {0}) and b = A({0}, {1}) are arbitrary.

Let 7(3: TM—~M denote the “base point projection”. Then the natural
transformation z: T'—1I satisfies, for = = (z,, 2,, #,, #;) e T* R,

(Tr)gm)(®) = (%o, ;) and (TT)(R)(CU) = (0o @)

Thus A = avy+bTr is the general formula for A.
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If n: I->T is a natural transformation, then 7 (%) = (%, 7:1(%))
for all x,e¢ B, where 7,: R — R. The requirement that

R_® . rp

R——— TR
(R)

should commute for every smooth f leads quickly to the conclusion that
7, i8 identically 0, and therefore 7 is the natural transformation such that
Nan: M —TM is the zero-section of a manifold into its tangent bundle.

THEOREM. (T, vp+ T, n) 8 the only monad for the functor T.

Proof. Indeed, the first diagram (7.1) will commute for A = ar,+bI%
if and only if a = b = 1. It so happens that in this case also the second
(square) diagram commutes.

Using the description of the natural transformations T->T? given
in Section 4, one can verify that the dual object, a co-monad for the functor
T, does not exist.

Regu par la Rédaction le 12. 5. 1973



