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1. Introduction. An n-ary polynomial of an algebra U is essentially
n-ary if it depends on all of its variables. Our main result (2) (Theorem 6)
is that if an algebra U has no constants and no essentially ternary poly-
nomials, then the number of essentially n-ary polynomials is divisible
by n.

This immediately yields a rather strong result on representability
of sequences in the sense of [2]. Another application shows how our
result extends a theorem of Wenzel [5].

The proof is based on finding variables with special properties. These
are introduced in section 2. The case of 4-ary polynomials is discussed
in section 3. The proof of the theorem is completed in section 4. The
applications .are given in section 5.

For the basic concepts and notations not defined in this paper the
reader is referred to [1].

2. Distinguished and terminal variables. Let p = p(x,,...,2,_,) be
an n-ary polynomial over the algebra . The symmetry group of p, denoted
by G(p), is the subgroup of the symmetric group S(n) on n letters,
consisting of all permutations a of {0,...,n—1} satisfying

PGy eeey @y y) =D (Aa yeovy Bn_nya) (=P (Fgy ooy @yy)).

The variable x; is a distinguished variable of p if ia = ¢ for all ae G(p).

The next result shows one method of proving that the number of
essentially n-ary polynomials is divisible by n.

THEOREM 1. If every essentially n-ary polynomial over W has a distin-
guished variable, then the number of essentially n-ary polynomials is divisible
by n.

(!) This research of both authors was supported by the National Research
Council of Canada.

(3) A weaker result was announced in the Notices of the American Mathematical
Society 16 (1969), Number 4, p. 659,
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Proof. For an essentially n-ary polynomial p set

Q(p) = {p°laeS(n)}.

Obviously, the set of all essentially n-ary polynomials is a disjoint
union of sets of the form @ (p), hence it suffices to show that n divides
|Q(p)|. Note that |Q(p)| is the same as the index of G(p) in S(n). Let
S;(n) denote the subgroup of S(n) consisting of all aeS(n) with ia = 4.
Thus by assumption there exists an ¢ with G(p) < 8;(n). Hence the index
of G(p) in S(n) equals the index of G(p) in 8;(n) multiplied by the index
of §;(n) in 8(n), the latter being n. This completes the proof.

For » = 2 we shall use another trick:

THEOREM 2. Let W be an algebra without constants such that, for some
n = 2, W has no essentially n-ary polynomial. Then the number of essentially
binary polynomials is divisible by two.

Proof. If p(x,, x,) is essentially binary, non-commutative, then
p(zy, ;) # p(®,, ;). Thus if the number of essentially binary polyno-
mials i1s not divisible by two, then there exists an essentially binary
commutative polynomial p. Since U is assumed to have no constants,
this implies [3] that

P(a’o, D@1y +eey P(Bns) wn—l)“'))

is essentially n-ary, contrary to assumption.

In order to apply Theorem 1 we have to find means of proving the
existence of distinguished variables.

From now on we assume that the algebra W has no constant and
no essentially ternary polynomial.

Let n > 3, and let p be an n-ary polynomial over U. A variable x; is
terminal (3) in p if by equalizing the variables of p so that there are at
most three left, the resulting polynomial depends only on z;.

A pair of variables {;,w;},% #j, is a terminal pair in p if by
equalizing the variables so that there are at most three left, the resulting
polynomial depends exactly on x; and ;.

THEOREM 3. A terminal variable is distinguished.

Proof. Let x; be terminal but not distinguished in p. Then there
exists an ae G(p) with ia # i. Substitute, in p, z, = «; for all k # ia™".
Since ae@(p), we get

p(mi, ceey CL‘,;, ceey wia_l’ ...) == p(w,-, ey wia_l, ceey m,,: ...),

hence the left-hand side depends only on z;, the right-hand side only on
T, 1y @ contradiction since % has no constants.

(3) This concept-is used implicitly in [4].
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THEOREM 4. Both variables in a terminal pair are distinguished.

Proof. Let {x;, #;} be a terminal pair. If, for some a<@(p), ta¢{t, j},
then we get a contradiction, similarly to the proof of Theorem 3. It remains
to consider the case ta = j and ja = ¢. By equalizing the rest of the varia-
bles we get a binary commutative polynomial. By the result quoted in
the proof of Theorem 2 this would imply that there are essentially ternary
polynomials, a contradiction.

3. 4-ary polynomials. In this section let & be an algebra with no
constants and no essentially ternary polynomials. We shall prove that
every essentially 4-ary polynomial has a terminal variable or a termi-
nal pair.

Let p be an essentially 4-ary polynomial. We distinguish three cases.

Case 1. There is a substitution #; = x; (¢ # j) such that p with
x; = x; depends only on a single x;, k¢{z, j}.

CLAIM. z;, 18 a terminal variable.

Proof. Let ¢ =0, j =1, k = 3. Then

(1) D (Zoy Toy Tay X3) = g(3).

p(xy, Ty, &,, x3) cannot depend on z, or x,, because if it depends
on z, (and therefore not on x,), then p(x,, z,, €y, 3) = g(x;) would depend
on z,. Thus

(2) P (Lo, @y Ty Ty) = g(X5)
and, similarly,
(3) P (Zoy Tyy Toy Xg) = g(X).

P (@3, Ty, @y, 73) depends on x,; thus it cannot depend both on z, and
x,. If it depends on «,, then p(w,;, 2,, 2,, ¥;) depends on z,, and so, by
(2), g(x5) depends on x,, a contradiction. Hence

(4) D (23 @1y oy T3) = g(&3).
Since the remaining two cases now follow trivially, this means that
x4 is a terminal variable.

Case 2. There is a substitution #; = x; (¢ # j) such that p with
x; = «; depends on both =, k¢{t, j}.

CLAIM. {xy, x,} (K, m¢{i,j}, k # m) is a terminal pair.

Proof. Let ¢ =2, j =3, and so

(5) P(Xoy Tyy Tay Ty) = Go3(@gy 24),

where ¢,, is essentially binary.
Now we prove that g,, = p(=,, v,, 2, ¥3) depends on z, and z, but
not on . '
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Putting z; = 2, we get gu(x,, abl); hence ¢,, depends on z,, and
on exactly one of x#, and x;. Assume the latter:

(6) P(Loy Tyy yy Xy) = G12(Xoy T3)-

Now consider h = p(x,, ,, T, %,); substituting z, = x, into h, by
(6) we get g,2(xy, z,), hence h depends on z,. We claim that » depends
neither on z, nor on z,; indeed, if » depends, say, on z,, then (since
ps = 0) h does not depend on x,, hence h(x,, 1, £,) = h(2q, 2;, ;) =
=P (Ly, Tyy Tyy Ty) = G12(Lo, Z,) DY (6), contradicting the assumption. Thus

(7) P (@, x’ly Lay Bo) = Gos(%o);
in particular,
(8) D(®oy Xy Loy o)

does not depend on z,. However, substituting z, = x, into (5) we infer
that (8) depends on z,, a contradiction. Thus

9) P(Zoy Tyy L1y X3) = G12(Toy %4)-
Similarly,
(10)  p (o, 24, Zos T3) = goa(®oy 1), P (Fo, Tyy Tyy Bo) = Goa(@o, 1),
(A1) p(@oy #1, 1y X5) = 12(%oy 1)y P (Zoy B1y Bay &1) = G13(%0, 21) -
Finally, we consider p (zy, %o, s, ¥3). By (5) it depemis on z,. Suppose
it depends on z, (and hence not on x,). Then, by (5),
p(.‘”o; Zoy g, x3) = p(woy Loy Loy Lz) = 923(“"07 L)
hence it cannot depend on x,. Similarly, p(xz,, %y, #, ;) cannot depend
on z;. Thus
(12) P (®oy Toy Tay T3) = (%) .
Formulas (5) and (9)-(12) verify that {z,,z,} is a terminal pair.
Negating the conditions of Cases 1 and 2 we get the final case:
Case 3. For all pairs 4, j (¢ # j), identifying x; and x; in p we get
a polynomial depending on x;.
CLAIM. No polynomial satisfies this assumption.

Proof. Let p satisfy the assumption of Case 3. Firstly we prove
that p with #; = 2; cannot be unary. Again let ¢ =0, j =1, and let

(13) P (Toy Loy Xay X3) = §(Xo).
If p(xy, x,, ,, x;) is also unary, say h(z,), then

(@) = P (Toy To, Ty T3) = h(@y),
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contradicting that U has no constants. Hence p(z,, z,, x,, #,) depends
on exactly one of z, and z,, say on z,, i.e.

(14) D (Toy Tyy Bay T3) = g(Xyy X).

Setting #, = x5 in (13) and z, = x, in (14) we get that g(x,) depends
on x,, a contradiction.
Thus, for instance, p(z,, z,, Zs, ¥3) is binary, say

(15) P (Boy Toy Loy X3) = Go1(Toy L2).
Then p(zy, 2,, o, ;) cannot depend on zz; indeed, if it does, that

18, P(@o, @1y Loy T3) = Go2(%oy T5), then p(xy, 2o, Ty, T3) = o2 (%o, &3), contra-
dicting (15) with z, = «,. Thus

(16) P(Toy Byy Toy Tz) = Go2(Toy 1) -

Finally, p(x,, ., ¥, ¥,) cannot depend on z,, because if p(x,, z,,
Zyy Ty) = Go3(®o, ¥2), then setting z; = x, in (16) we get

Go2(Zoy T1) = P (Zoy @1y Loy To) = Gos(Zoy o),

a contradiction. Thus,

(a7) P(Toy @iy Loy Lo) = Go3(Toy @)

Then (15) and (17) yield

Jo1(Toy T3) = D (Foy Loy Tay To) = Gos(%oy Zo);
this final contradiction completes the discussion.

4. The main result. The results of sections 2 and 3 combine to give
the first step of an inductive argument:

THEOREM 5. Let U be an algebra with no constants and no ternary
polynomials such that every 4-ary polynomial has & terminal variable or
a terminal pair. Then the same is true of all essentially n-ary polynomials
for n > 4.

Proof. Let the statement be proved for all essentially m-ary poly-
nomials for all m < n, where n is an integer, n» > 4, and let p be an essen-
tially n-ary polynomial. We distinguish three cases as in the discussion
of section 3. Let p; denote p with the substitution #;, = =;.

Case 1. There exist ¢, j (¢ # j) such that p;; has a terminal variable
Ty k 9-‘{/" H .7 } ‘

CLAIM. x;, s terminal in p.

Proof. Let + =0, =1,k =2. To show that x, is terminal in
p we have to consider all p ., ¢ # r. Either (a) p,, has a terminal variable
Zq, or (b) P, has a terminal pair {z,, #,}. Let (a) hold and let ¢ be p with

Colloquium Mathematicum XXII.1 2
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xy = xy and v, = x,. If #, # 2, in ¢, then ¢ has two terminal variables,
a contradiction. If , = x,in q but a # 2, then {0, 1} N {q, r} is a singleton
and ae{0,1},e.8.a =0, g =1, r =2. Then weset 3 =2, = ... = x,_,
in p; the resulting polynomial ¢ has x, as a terminal variable if 2, = «,,
and z, as a terminal variable if x, = «,, clearly contradicting Case 1 of
section 3. Hence a = 2. |

Now if (b) holds for p,, and x, = x, is not implied by x, = #; and
x, = x,, then these substitutions yield a polynomial with a terminal
variable and a terminal pair. However, if x, = x, is implied by z, = 2,
and x, = x,, then («) {0,1} U {p, ¢} has 4 elements or (8) {0,1} U {p, ¢}
has 3 elements, including @ and b. If («) holds, then p with z, = #, and
x, = x, has @,, x,, and x, as terminal variables but they are not all equal.
If (8) holds, then by identifying all variables in p other than #,, z,, z,,
and x, we get a 4-ary polynomial contradicting Case 1 of section 3.

Case 2. There exist ©,j (¢ # j) such that p;; has a terminal pair
Ty By Ky Le{7, j}.

CLAIM. {z;, z;} 8 a terminal pair in p.

Proof. Let 1 =0, j =1, k =2, 1 =3. To show that {x,,a;} is
a terminal pair in p, we have to consider all p,,. Either p,, has (a) a terminal
variable z, or (b) a terminal pair {z,, x,}. If (a) holds, then p with x, = z,,
x, = x, has x, as a terminal variable and {z,, @3} as a terminal pair, which
is a contradiction unless {¢, 7} = {2,3} and a = 2 (¢ = 3), in which case
we get that p,s has x, as a terminal variable, as required. If (b) holds
for p, and {a, b} = {2, 3}, then we are done. If {a, b} # {2, 3}, then
p with xy = x,, , = @, has two terminal pairs, a contradiction, unless
x, = ¢, and x, = 23 (or the other way around) after the substitution.
This is possible only if {0,1} U {¢g,r} has 3 elements and, say, it
includes @« and 2, and b =3 (or a similar combination). In this case
we set 3 =2, =... =x,_, in p and get a polynomial contradicting
Case 2 of section 3.

Case 3. For every ¢ * j either x; is the terminal variable for p;
or p; has a terminal pair {x;, 2}, k # 1, k # J.

CLAIM. No polynomial satisfies this assumption.

Proof. The assumption is that if x; = «; is followed by other sub-
stitutions, the resulting polynomial will always depend on z;. Substitute
X3 = ... = &,_, in p. The resulting polynomial q satisfies Case 3 of section
3, consequently, it cannot exist.

This completes the proof of Theorem 5.

Now we are ready to state and prove the main result.

THEOREM 6. Let A be an algebra without constants and with no essen-
tially ternary polynomial. Then, for every n > 2, the number of essentially
n-ary polynomials is divisible by n.



NUMBER OF POLYNOMIALS II 19

Proof. For n = 2, this is Theorem 2; for n = 3 this holds vacuously.
For » = 4 this follows by combining section 3 with Theorems 1, 3 and 4.
For n > 1 the statement follows from Theorems 1, 3,4 and 5.

5. Applications. For an algebra % and » > 2 let p,(A) denote the
number of essentially n-ary polynomials; let p,(%) denote the number
of non-constant unary polynomials excepting p(x) =, and p,(%)
the number of constant unary polynomials. Let us call a sequence
PoyPys-+vy Pny-..) representable if, for some algebra A and all
n>=0, p, = p,(A). The following result was proved in [2]:

Any sequence {0, Py, Poy+-vy Ppny---» 18 representable if p; >0 and
n divides p, for n = 2.

Combining this with Theorem 6 we get

THEOREM 7. Let p, > 0; the sequence {0, P, P2y 0, Ps,y ...> 18 repre-
sentable if and only if n divides p, for all n > 2.

Let K be an equational class of algebras, and let F, denote the number
of elements of the free algebra over K on n generators. Let U be the free
algebra over K on o generators, p, = p,(%A).

The following formula is evident: if p,(%A) = 0, then

Fy=put 0By — (" o) Fucat (" o) Faca— oo+ (— 1" nF,.

Since n divides (;':) for 1 < k< n, we conclude that p,, is divisible by =

if and only if F, is divisible by n. Thus Theorem 6 gives the following result:

THEOREM 8. Let U be a free algebra on n generators with po(A) = ps(A)
= 0. Then n divides the cardinality of U.

Under the additional assumption p,(A) = p,(A) = 0, this is the result
of Wenzel [5].
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