COLLOQUIUM MATHEMATICUM

VOL. XXXIX 1978 FASC. 1
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AND STEINHAUS’ THEOREM
IN TOPOLOGICAL MEASURE SPACES

BY

MARCIN E. KUCZMA (WARSZAWA)

Steinhaus’ theorem [9], asserting that for any sets 4,B < R of
positive measure the set A + B has interior points, and its group analogue
due to Weil [10], chapitre IIT, § 11, p. 50, admit various generalizations
and modifications. For instance, as shown by Erdoés and Oxtoby [1],
Theorem 3, the operation of addition in Steinhaus’ theorem may be re-
placed by any binary C!-operation with non-vanishing partial derivatives.
The present paper is a continuation of the author’s previous papers [4]
(joint) and [3], containing extensions of Steinhaus’ theorem. (The result
of [4] is, in fact, nothing else but the above-mentioned Theorem 3 of [1];
the papers [1] and [4] are independent, and so is also Miller’s paper [5]
containing the same result.) The proofs given in [4] and [3] are based on
a common idea ingpired by Weil’s convolution proof. The Theorem present-
ed in Section 2 is a joint extension of the results of those papers (to some
extent also of Weil’s theorem) and its proof follows once more the same
pattern. The difficulties that arise are rather of technical nature and
require the use of a property corresponding to the rule for the differentiation
of an implicit function (Proposition 2).

Weil’s idea has also been taken up by Paganoni [6] and carried on by
Sander [7]. Their setting the problem is somewhat more general than that
presented in this paper (see p. 106). Roughly speaking, in [6] and [7] strong-
er assertions have been obtained under stronger assumptions, and the
method applied differs considerably.

The arrangement of the contents of this paper is quite parallel to
that of [3]; propositions and lemmas closely correspond to those in [3].
Facts and arguments contained in [3] are often referred to.

1. Notation and definitions. These are also preserved from [3]. We
list briefly some of them, introducing also some other definitions and con-
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ventions. For any unexplained non-standard notions or notation we refer
the reader to [3].

Let (X, #) be a measurable space (a set X with a o-field .# of its
subsets). In the sequel we shall be concerned with mappings of the form
X—>X, XxX—>X, and X x X - X X X. Speaking of measurability of
such mappings we always mean measurability with respect to the o-fields .#
(in X) and # X (in X x X).

A Dbijection g: X - X is called bimeasurable if both ¢ and g~' are
measurable.

Let m be a measure on .#. Sets of measure zero are called nullsets.
A measurable mapping g: X — X is called non-singular if g~' (F) is a nullset
for any nullset £ < X.

Let m and u4 be two measures defined on the same o-field .#. The
fact that u is m-continuous is written symbolically: 4 < m; the notation
du = odm (or o = du/dm) means that ¢ is the RN (Radon-Nikodym)
derivative (or the density) of 4 with respect to m. In the case of u given
by u(E) = m(g(E)), where g: X - X is some bimeasurable mapping,
the function du/dm is also called the RN derivative of the mapping g¢.

If » is another measure on .#, we have

dx dx d
1) ==L,
dm du dm

provided the densities on the right-hand side exist. If g and & are bimeas-
urable mappings, non-singular together with their inverses, and if a, 8, y, 6
denote the RN derivatives (with respect to the same measure m) of g, &,
h~!, goh™!, respectively, then

_ 1 and _ aoh™!
"~ Boh! "~ Boh7'’

These are rather familiar facts from measure theory (for proofs see,
e.g., [2]). Equalities (1) and (2) are asserted to hold m-a.e.; in fact, the
functions occurring there are defined up to equivalence.

If X is a topological space, we denote by #(X) the o-field of Borel
subsets of X. A measure m defined on #(X) is regular if it is finite on
compact sets and satisfies

(3) m(E) = sup {m(K): K compact, K < E}

= inf{m(U): U open, U o E}
for any set K € #(X). If g: X — X is a homeomorphism, then the regu-
larity of m implies the regularity of the measure E > m(g(E)). If o is

a continuous non-negative function on X, then the measure du = gdm
is regular, provided m is regular.

(2) 4
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Let f: X x X - X. The following solvability conditions have been
introduced by the author in [3]. The first of them makes sense if X is any
set, the second and the fourth are meaningful if X is a topological space;
in the third one, X has to be a measurable space:

(8) The equation f(z, y) = z has a unique solution y, respectively z,
for any fixed values of , 2, respectively y, z; this solution will be denoted
by ¢(z,2), respectively w(z, ).

Condition (S) defines thus two mappings ¢, y: X X X - X.

(C8) f satisfies (S), f, ¢, and y are continuous.

(MS) f satisfies (S), f, ¢, and y are measurable.

(BS) f satisfies (MS) with respect to the o-field #Z(X).

Condition (S) means that, for z, y, 2 € X fixed, the mappings

(4) f(9), flz,y ),
hence also
(3) (-5 2), w(z,°)

are bijections. Clearly, for z € X fixed, mappings (5) are mutually inverse.

~ Condition (CS) implies that mappings (4) and (5) are homeomorphisms.
Similarly, condition (MS) implies that they are bimeasurable. In the case
of a topological space with a countable base, (BS) is a consequence of (CS).

2. Extension of Steinhaus’ theorem. We now formulate the main
result:

THEOREM. Let X be a topological space and let m be a o-finite reqular
measure on &(X). Let f: X x X — X be a transformation satisfying conditions
(CS) and (BS) and such that, for any z,y € X fized, homeomorphisms (4)
are mon-singular together with their inverses. Further, suppose that there
exist positive-valued continuous measurable functions a and f on X X X
such that, for z, y € X fixed, the functions a(-,y) and f(x, -) are the RN de-
rivatives of mappings (4). Then for any sets A, B € #(X) of positive measure
the set f(A x B) has interior points.

Clearly, for X = R, m being Lebesgue measure, and f(z,y) =z +y
(then a = f = 1), this is precisely Steinhaus’ theorem. If X is a locally
compact g-compact group, m is Haar measure, and f is the group operation
(then either a =1 or 8 =1, according as m is left or right invariant),
we obtain Weil’s theorem.

In the case of f being coordinatewise measure-preserving (i.e., in the
case where a = f = 1), this result has been established in [3]. In the
present situation the assumptions concerning f are somewhat less restric-
tive. A result of this type for X = R has been obtained in three indepen-
dent papers [1], [4], and [5].

7 — Colloquium Mathematicum XXXIX.1
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The proof of the Theorem is split into several steps, similarly to the
proof of the Theorem in [3]. Propositions 1 and 2 are direct analogues
of Propositions 1 and 2 of [3]; Lemma 1 corresponds to Lemma 3 of [3].

In this section we only give Proposition 1 sketching its proof. The
proof of the Theorem will be completed in the next section.

PrOPOSITION 1. Let X and m be as in the Theorem andlet f: X x X - X
be a transformation with the following properties:

(a) f satisfies condition (S), ¢ 18 measurable, and y t8 continuous;

(b) f(z, ) and y(2, ) are measurable for any z,2 € X;

() p(x, -) 18 non-singular for any x € X;

(d) for any compact B = X the fumction m(y(-, B)) is lower semicon-
tinuous.

Then for any two sets A, B € #B(X) of positive measure the set f(A x B)
has interior points.

Outline of the proof. This proposition differs from Proposition 1
of [3] very slightly; namely, in [3], instead of (c) and (d), it is required
that f(z, -) and y(2, -) preserve measure. However, the proof given in [3]
retains its validity. Just as there, we fix compact sets A and B with
m(A) > 0 and m(B) > 0 (by regularity, it suffices to prove the assertion
for compact sets) and we introduce the function w: X - R given by

w(2) = m(4ANny(z, B)).

Applying assumption (d) we can verify that « is lower semicontin-
uous; using (¢) it is not difficult to show that

[ w(z)@m(z) > 0;
X

for details see [3]. Hence the set 2 = {z € X: w(2) > 0} is open and non-
empty. This completes the proof, since 2 < f(A4 x B), a8 is easy to see.

~ 3. An abstract analogue of the rule for the differentiation of an implic-
it function and the proof of the main result. The proof of Theorem 2 of [4] is
essentially based on the formula expressing the dervative of an implicit
function. The following proposition can be regarded as an analogue of
that formula.

PROPOSITION 2. Let X, m,f, a, and § satisfy the assumptions of the
Theorem. Then for every z € X mappings (5) are non-singular and the func-
tions

(6) a(‘”:?’(w’z)) ﬁ('/’(z’?/)’y)

Bz, 9@ 2) " alv(z, 9), 9)

are the RN derivatives of mappings (5).



STEINHAUS' THEOREM 29

(Obviously, a and § play the role of the partial derivatives in the
classical theorem.)

For the proof we shall need two lemmas. The first of them is, in fact,
a version of Proposition 2 of purely measure-theoretic character.

LemmA 1. Let (X, #,m) be a measure space with m o-finite and
let f: X xX—X be a transformation satisfying condition (MS). Suppose
that there exist positive-valued measurable functions a and f on X X X such
that, for almost every x € X and almost every y € X, mappings (4) are non-
singular together with their inverses and the functions a(:,y) and f(x, )
are the RN dertvatives of mappings (4). Then for every set A € # and almost
every ze€ X we have

7 4,2) = a(s, 9(3,2)) .

@) ’m(tp( z)) Af Bz, (2, 2)) )

and, similarly, for every set B € # and almost every z € X we have
ﬂ('/’(zy Y), y)

8 y B)) = d .

(®) m (v (2, B)) Bf TR

Proof., Let F,G: X XX > X x X be defined by

F(z,y) = (wyf(m’ ?/)) and G(z,y) =(f(m7?/)7y)°
It is not difficult to show (see [3], Lemma 1) that, in view of condi-
tion (MS), F and @ are bimeasurable. Put & = GoF7}, i.e.,
(9) (@, 2) = (2, p(z, 2)).
For A,Be . # we have

F(AXB) = {x,2): xe€ A,ze€f(z,B)}.

Hence, applying the fact that a(-,y) and B(x,-) are the RN deri-
vatives of mappings (4), by the Fubini theorem we obtain

M(F(AxB)) = [m(f(z, B))am(z) = [ [B(z,y)dm(y)dm(z) = [ pdM,
A 4 B

AxB

where M denotes the product measure m x m. This shows that g is the RN
derivative of F, and so F and F~! are M -non-singular. Similarly, a is the
RN derivative of @, and 50 G and G~! are M -non-singular. Consequently,
according to (2), the RN derivative of @ is the function

a(F_l(wr z))
ﬂ(F—l(wy z)’ )

(2, 2) —
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But F'(z,2) = (»,¢p(z,2), a8 can easily be verified. It follows
that the RN derivative of @ is just the integrand in (7). Thus

a(“"r‘l’(w9z))
0 M(P(A x0)) =
(10) (P(4 % 0)) Axfc B(o, 0@, )

Now, let A € .# be fixed and take any set C € #. In view of (9) we
have

dM(x,2) for A,Ce 4.

DP(AxC0) ={(=,9): 2€C,yep(4,2?)},
whence

(11) M(D(Ax0) = [mlp(4,2)dm(2).
C

The set C being arbitrary, the equality of the right-hand sides of (10)
and (11) implies, by the Fubini theorem, that (7) holds for almost every
z € X. Assertion (8) follows by symmetry.

Remark. In the assertions of Lemma 1, “for almost every z e X”
means “for all 2z € X off a nullset which depends on A, respectively on B”.
In the case where this nullset can be chosen independently of A and B
the lemma states that functions (6) are the RN derivatives of mappings (5)
for almost every z € X. In order to pass from almost all to all ze X we
need the topological assumptions of the Theorem.

LEMMA 2. Let X and m be as in the Theorem and let f: X x X - X
be a transformation satisfying condition (CS). Then for every z,e€ X and
any compact sets A, B — X we have

(12) m(p(4, 2)) > limsupm (p(4, 2)),
(13) m (y (2, B)) > limsupm (y(z, B))

(i.e., the functions m(p(A4,)) and m(yp(-, B)) are upper semicontinuous).
Proof. Fix an ¢ > 0 and take an open set V o> ¢(4, 2,) with

m(V) < m(p(4, 2)) +e

(which exists by the regularity of m). By assumption, ¢ is continuous;
consequently, A being compact, it is easy to find a neighbourhood W of z,
such that (4 xW) < V. Then

m(p(A,2)) < m(p(d,2))+e for zeW

and (12) follows. (13) is proved analogously.

Proof of Proposition 2. Let A, B « X be fixed compact sets.
According to Lemma 1, equalities (7) and (8) are satisfied for » € X\Z,
where Z is a nullset. It is not difficult to prove (see [3], Lemma 4) that



STEINNAUS®* THEOREM 101

the set X\Z is dense (unless m = 0, but in this case the proposition is
obvious). Thus every point 2, € X can be approached by points z € X\Z,
and so we can pass to the limit in (7) and (8) a8 2 — 2y, 2 € X\Z. The
convergence under the integral sign is uniform by the compactness of .4
and B and by the continuity of a and 8. Thus, on account of (12) and (13),
we obtain, after passing to the limit,

a(“”?’(m’zu))
(14) m(?’(A,zo))>Af Blo piee] ™
B(v(zy ¥), 9)
15 ., B)) > .
(15) mp(e >)>Bfa(¢(zo’y)’y) m(y)

This holds for any 2, € X and any compact sets A, B c X.
Now let 2, be fixed and write

_ Blv(20, 4), ?/} .
a('l’(zm Y)y y) ’

_ a(“"’ ¢(z, zo))
ﬁ(w’ o(z, zo))

e(@) and  z(y)

we have

1
(16) 7(y) =m for z, y connected by f(z,y) = 2,

(ie., for y = @(x, 2,) or 2 = y(z, y)). Consider the measures u,» and
my, m, on #(X) given by

du = pdm, dy = tdm,
my(E) = m(p(E,2)), m,(E) = m(yp(z,E)).
Then (14) and (15) can be rewritten as
m,(4)> u(4) and  m,(B)>¥(B)
for A and B compaet. According to the remarks after formula (3), all
these measures are regular, and so

(17) me>p  and  m,>v.

Since, by assumption, ¢ > 0 and > 0, the measures m, u, and »
are mutually continuous. Hence, by (17),

(18) m<m, and m<m,.

We shall show that the converse relations also hold. Suppose that
m(E) = 0. Writing F = ¢(E, 2,) (equivalently, B = y(z,, F)), we have
m,(F) = 0. Hence, by (18), m(F) = 0; consequently, m,(E) = 0 for any
E with m(E) = 0, i.e., m, < m.



102 M. E. KUCZMA

By symmetry also m, < m. Thus all the five occurring measures are
equivalent (mutually continuous), and so their relative RN derivatives
exist; the equivalence between m, m, and m, is a part of the assertion
of the proposition.

Write

dm, dm,
§= dm and g = dm

Mappings (6) being mutually inverse, by (2) we have

1
(19) 7(y) =% for f(z, y) = 2.

From (17) we get, in view of (1),

dm, dp dmg,
du dm du
dm, dv dm,
dv dm dv

(These equalities and inequalities hold a.e. relative to any of the

equivalent measures in question). On account of (16) and (19), we infer
that the last inequalities are in fact equalities

E =

[
S
\Y%
°

17=

dm, = pdm and dm, = tdm.

This, by the definitions of ¢, + and m,, m,, in view of the fact that 2,
was chosen arbitrarily in X, completes the proof of Proposition 2.

The Theorem formulated in the preceding section can now be derived
easily from Propositions 1 and 2.

Proof of the Theorem. It suffices to verify that the assumptions
of Proposition 1 are fulfilled. Now, (a), (b), and (¢) are contained in the
assumptions of the Theorem: (a) and (b) hold since f satisfies conditions
(CS) and (BS); (c) follows from the fact that the mapping ¢(z, -) i8 inverse
to f(x, -). To obtain (d), observe that for any B € #(X) and z € X we have,
in virtue of Proposition 2,

m(y(2, B)) = f otz 9,9
B

a('l’(z’ Y),9)

m(y);

for compact B this quantity depends continuously on 2, since the integrand
is a continuous function. Thus (d) is also satisfied and the Theorem follows
from Proposition 1.

4. The case of X = R". As a consequence of our Theorem we obtain

COROLLARY. Let A, B — R" be sets of positive n-dimensional Lebesgue
measure, let A = R™ be an open set containing A X B, and let f: 4 - R"
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be a C'-mapping such that the Jacobians Df|/Dx and Df|Dy are different
from zero in A. Then the set f(A X B) has interior points.

(For » = 1 this has been proved in [1], [4], and [5].)

Apparently, this fact is a particular case of the Theorem if A is the
entire R*" and for every z,y € R" the mappings f(z, ) and f(-,y) are
diffeomorphisms of R"™ onto R": it suffices to put a = |Df/Dz| and
B = |Df[Dy| (cf., e. g., [8], Chapter VIII, 5.3). The general case can be
reduced to that just described by means of the following lemma:

LeMMA 3. Let f satisfy the conditions of the Corollary. Then for every point
Po = (%o, Yo) € A there exist a meighbourhood U X V of p, with UXV < 4
and a C*-mapping f: R*"—> R™ such that f = f in U x V, and for any fiwed
x,y € R" the mappings f(x, -) and f(-, y) are diffeomorphisms of R™ onto R™.

The assertion of the Corollary is then clear: we may assume that A
and B are compact; each point in 4 has a neighbourhood U x V with the
properties above; finitely many such neighbourhoods cover A x B; at
least one of them is such that UnA and V nB have positive measure, and
it suffices to apply the Theorem to the mapping f whose existence is as-
serted by Lemma 3. Thus it remains to prove the lemma.

Proof of Lemma 3. We may assume that x, = y, = f(%, %) = 0.
We have

(20) f=L+h in 4,

where L = f’(0) denotes the differential of f at the point 0 € R*® and
h: A — R" is a C'-mapping with
(21) h(0) =0 and 2'(0) =0.
Write
L, =L(x,0) -and Lyy = L(0,y).

By assumption, f(-, 0) and f(0, -) have non-zero Jacobians, and so L,
and L, are linear automorphisms of R". Let

(22) 5 = = mm( 1 1 )
2 TR Al

(Il denotes the operator norm). In view of (21),  being of class C', there
is > 0 such that

(23) 4, = {(=,y): [z|l<r,lyl<r}c 4, <4
and

(24) I (p)ll <3d for p e 4,.



104 M. E. KUCZMA

We now construct a C'-mapping k: R*"— R™ with the following
properties:

(25) h(p) = h(p) for pe4,,
and
(26) IW'(p)I< & for all p e R*™.

The construction is standard: we take a C'-function %: [0, + oo)
— [0, 1] with

) =1l for 0<t<d, #7n(@)=01fort>1,
S

') <3 forallt>0
and we put
lwl) (lyl)
7 h for = {2 eAd
h(p)=[’7(,. (2) p=(z,y)ed,
0 for p ¢ 4.

It is not difficult to verify by an elementary calculation that A is
of class C' on R and satisfies (25) and (26).

Now we can define the desired neighbourhoods U, V and the mapping f.
Namely, we put

={weR™ [g|<ir}, V ={yeR": yl<ir}
(27) f=L+h.

Then f is a C'-mapping of R** into R". Forp € U x V we have f(p)
= f(p) by (20) and (25). It remains to verify that for #, y fixed the mappings
f(=,-) and f(-, y) are diffeomorphisms of R" onto R".

Thus fix ¥y € R" and write

q(2) = f(L7'2,y) for zeR".
Then ¢: R* > R" is a C'-mapping and
(28) f(z,y) = ¢(L,x) for xeR".
Writing (27) in the form
f@,y) = Liz+ Ly +h(z, y)
and putting 2 = L,z we obtain
(29) q(2) = 2+ Ly +h(L7'z,y) for zeR".

The last summand is a contraction in z: indeed, for any z,,2, € R"
we have, by the Lagrange inequality, in view of (26) and (22),
b (L7 2y, 9) — h(L7 20, )| < 81(L 21y 9) — (L7 25 9)|
= 8|L'2y — L' 2| < QUL+ |2y — 2ol < %121 — 20l
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Thus (29) can be rewritten as
q = identity + const + (}- Lipschitz map).

Consequently, ¢ is a bijection of R" onto R". The same decomposition
shows that |¢'|| > 4 at each point, and so ¢ is a diffeomorphism. Hence,
by (28), also f(-, y) is a diffeomorphism of R" onto R".

The assertion concerning f(z, -) for x fixed follows from symmetry.

5. An example and problems. The smoothness assumption in the
Corollary is not nice, as the remaining conditions and the assertion involve
pure measure and topology. However, the following example shows that
this assumption cannot be entirely omitted: it does not suffice to require
that f be continuous and coordinatewise monotonic (for » = 1).

Example. There exist a compact set 4 — R of positive Lebesgue
measure and a continuous function f: R®*— R such that for any fixed
x,y € R mappings (4) are increasing homeomorphisms of R onto K and
the set f(A x 4) has no interior points.

Construction. Consider the set

0
K = {24en-5'": e, =0 or g, = 1}.
n=1
K is a subset of [0, 1], homeomorphic to the Cantor set. Let g: [0, 1]
— [0, 1] be the Cantor-Lebesgue function constructed with respect to
the set K, i.e., the function determined uniquely by the conditions
g(@) = De, -2 for @ = D4e, 5" ek,
n=1 n=1
and
g is non-decreasing on [0, 1].

Then the funection h: [0, 1] - [0, 1] given by

h(z) =tz +1g(x)
is continuous and strictly increasing. We extend k to a homeomorphism

of R onto R by putting k(z) = « for z ¢ [0, 1] (and preserving the symbol k)
and we write

f(@yy) =" (@) +h7(y).
Now let A = h(K). Then A has measure 3 and we obtain f(4 X A)
= K+ K.
By definition, K consists precisely of those numbers 2 € [0, 1] which
can be written in the quinary numeration system with the use only of
the digits 0 and 4. The sum of two such numbers admits a quinary expan-

sion in which the digit 2 does not occur, and so the set f(4 x A) = K+ K
has no interior.
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Note that the above argument involves essentially the fact that g
i8 singular. Therefore, it is natural to ask:

ProBLEM 1. In the situation of the Corollary for » = 1, can the assump-
tion of class O' of f be replaced by the requirement that f is continuous

and, for any «, y € R, functions (4) are strictly increasing and absolutely
continuous together with their inverses? (P 1029)

The smoothness of f in the Corollary corresponds to the continuity
of the functions a« and g in the Theorem (and in Proposition 2). We are
thus led to the following question, an extension of Problem 1:

ProBLEM 2. Is the assumption of continuity of a and f necessary
in Proposition 2 and in the Theorem % (P 1030)

(The mere existence of these functions is a consequence of the remain-
ing assumptions and the Radon-Nikodym theorem:.)

To conclude the paper, we indicate some possible directions of further
research.

First, we can ask whether Proposition 2 and the Theorem admit
a local version. That means: do their assertions remain true if f is defined
(a8 in the Corollary) not necessarily on the whole of X x X and other condi-
tions are satisfied locally (in some sense which requires a precise definition)?

Secondly, we can try to replace one space X by three topological
measure spaces X, Y, Z and to let f be defined on a subset of X x Y and
have values in Z. Actually, in all considerations of this paper we could
have assumed that f is of type X x ¥ — Z and all the proofs would have
gone through. However, this would not do any good, since the “global”
conditions (CS) and (BS) imposed on mappings (4) (in a formulation
involving the triple X, Y, Z) imply that X, Y, and Z are, in fact, the
same space. Therefore, this generalization is interesting in the “local ver-
sion” only.

We can go a step further: since “Steinhaus type” theorems involve
measure in X and Y, and topology in Z only, one might assume that X
and Y are measure spaces and Z is a topological space. But, of course,
these structures have to be related in some way (by f).

Certain positive results relevant to these topics have been obtained
by Paganoni [6] and Sander [7] under additional assumptions of very
technical character.

As it has already been remarked, Proposition 2 is an analogue of the
rule for the differentiation of an implicit function. It would be nice to
have an abstract version of the implicit function theorem itself, i.e., to
have a theorem asserting the local solvability of the equation f(z,y) = 2
under assumptions formulated in terms of the topological and measure-
theoretic properties of mappings (4). The author does not know whether
any such generalizations of the implicit function theorem do exist.
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