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1. Introduction. If T is a contraction on a complex Hilbert space (i..
|IT)| < 1), then by the inequality of J. von Neumann we have

lle (Dl < supfle@): |z <1} = lloll 4o

for any complex polynomial ¢.

B. Sz.-Nagy observed [11] that if T is an invertible bounded operator
on a Hilbert space such that || T"| < C for any integer ne Z, then T is similar
to a unitary operator and then for every complex polynomial ¢

() lo (DIl < Cllel jo-

A. Lebow [7] showed that there exists a power bounded operator on
a Hilbert space (i.e. || T"|| < C, n = 0) which is not polynomially bounded (i.e.
the inequality (») does not hold).

Later A. M. Davie and V. V. Peller ([3], [13]) produced other examples
of the operators of that type.

In this paper we introduce and describe a subspace of multipliers of the
Hardy space H' — the Littlewood—-Hankel multipliers T,” (p = 1, 2).

Among other facts we show that TF is the space of the multipliers from
H' to H>.

The main result of this note is the following: for every sequence (c,)e T{"
there exists a power bounded operator T on a Hilbert space H such that

ca=<T"{,n) for some {, neH.
Using that fact we prove that for any ¢ > 1

lolle > K () Y 1927,

n=0
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where ||¢]. = sup{llfp(T)ll [IT < c}. A similar inequality was obtamed by

Davie [3] and Pel]er [13] by different methods.

As a consequence of our Theorem 1 we construct a large family of
power bounded operators which are not polynomially bounded.

The author wishes to thank R. Szwarc for valuable discussions and
remarks.

2. Preliminaries. Let X be an arbitrary set and let L(/*(X)) denote the
Banach space of all bounded operators on I*(X). Every element ke L(I*(X))
can be considered as a mapping k: X x X — C such that |k|| < oo, where

[Ikll* = sup {lek(x yu()|*: jul, =1}

The algebra of Schur multipliers V,(X) is defined as follows: a€ V, (X) if
a: X x X — C and for every ke L(I*(X)) lla-k|| < |llalll ||k|| (the multiplication
here is the pointwise multiplication of the matrices). Schur multipliers were
extensively studied by G. Bennett [1] who proved the following useful
theorem:

ae V,(X) if and. only if the operator a: I'(X)— I®(X) is an absolutely
summing operator.

The Grothendieck inequality and the above theorem imply that:

aeV,(X) if and only if there exists a Hilbert space H such that the
operator a can be factorized through H, i.e.

1¥(x)
H

or equivalently, a is of the form a(x, y) = {a(x), B(y)), where a, B: I'(X)—> H
and |la(x)ll < C, IBW)I < C.

If Y and Z are two spaces of functions on some set X, let M(Y, Z)
denote the space of the multipliers from Y into Z, i.e. the space of the
functions ¥ on X such that y-feZ for every feY.

If A, B are two Banach spaces let L(A, B) denote the space of the linear
bounded maps from A4 into B.

In our notation V,(X) = M(L(?(X))).

N. Varopoulos [15] introduced the space of Littlewood functions —
T,(X). A function cel®(X x X) is called a Littlewood function if ¢ can be
decomposed as

a: {'x)

c=a+b,

where

a: '(X)—-1*(X) and b: P(X)—I*(X)
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or, in other words,
T,(X) = L(l1 (X)_, IZ(X))+ L(l2 (X), l°°(X)).

By the Grothendieck inequality we see that
T (X) = V2 (X).

Now we recall the theorem of Varopoulos on the characterization of
Littlewood functions (see [15]):

-a€ T, (X) if and only if for any choice of finite subsets F,, F, of the set X
{Tla(x, yi*: xeFy, yeF,} < C* max (|F)).

ji=1,2

Now we introduce a subclass T, (X) of the Littlewood functions (which
is more important for this note), defined as

T, (X) = L(I*(X), I (X)) + L(I°(X), I°(X)).

It is not difficult to observe (see [2]) that a function a belongs to T (X) if
and only if for any choice of finite subsets F,, F, of X we have

{Xla(x, y): xeF,, yeF,} <C max (IF) .
J=1,

3. Littlewood-Hankel multipliers. From now we put X = N, the set of
all nonnegative integers. We shall say that a sequence (c,) is the Hankel
multiplier ((c)e MY) if the matrix (c;,;) is a Schur multiplier.

If H'(T) denotes the Hardy class, ie. H'(T) = {f e L'(T): f(n) = 0 for
n < 0}, where f(n) is the n-th Fourier coefficient of f, then by the Z. Nehari
theorem [9] we have

MY < M(HY).
Definition. A sequence ¢ =(c,) is called a p- Littlewood—Hankel

multiplier (ce T,) if (c;+)€ T,(N) (p=1 or 2).
ProposITION 1. Let p =1 or 2. The following conditions are equivalent :

® (cheT);
(ii) sup(1/m) Y kigl? < oo;
m21 k=1
(ii) sup (1/m?) Y. k?|¢y/P < o0;
m=1 k=1
2m
(iv) sup Y lelP < oo;

m=1 k=m
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() If ¢prm = a(n, m+b(n, m), where

a(n, m) = Co+m Jor n=>m,
’ 0 for n <m,

then ac L(I*, I?) and be L(I7, I™).
Proof. Since

2m 2m 2m
Y led <(/m?) Y kel < 2/m ¥ k|,
k=m k=m k=m

we infer that (i) = (ii)) = (iv).
Let ¢ =(c)e T7; the Varopoulos theorem implies that

Y leiJ)P<Cm  forany m=1,2,...,
=1

and by an elementary calculation we get

m m
Z klal? < Z |ci+j|',
k=1

i,j=0

hence (i) = (ii). To obtain the implication (iv) = (v) let us observe that the
decomposition ¢; . ; = a;+b;;, where a;; = ¢;,; for i > j and 0 for i <, yields

2i - 2j
Zlaijlp = z lell”  and ZIbijlp < z lexl®.
J k=i i k=j

The implication (v) = (i) now follows from the definition of T7.
CoroLLARY 1. Let E =(n) be any sequence of positive integers with
M1/ = A> 1. Then I®(E) < TH.
For the proof let us note that for any natural m we have

|{n€e E: m < n < 2m}| < Const.

ProrosiTioN 2. TH = M(H', H?.

The proof of that fact follows from Proposition 1 and the well -known
characterization of M(H', H?) (see Duren, Theory of HP spaces). We shall
present the proof which does not use the theory of analytic functions.

Proof. Let (c)e M(H!, H?) = M(H!, I?) and let F,, denote the Fejer
kernel

F...(t)=“‘lz< (1—|kl/m) ™.
Let us define G, (t) = F,(t)¢™. It is clear that
(i) Gue H', |IGull,1 = 1;
(i) G, (k) =k/m for 1 <k <m.
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Since (c,)e M(H!, I?), by the Closed Graph Theorem we have
3 lesGalb? < CIGE = C.
Hence
(l/mz)‘i1 k?|c|? < C?

and, by Proposition 1,
M(H!, P) < TH.
On the other hand, if (c)e T, then for any sequence (), |a, =1,
(+3) (@, c)e T = M(HY).

Let us take a, =r,(w), where we[0, 1] and r, is the sequence of the
Rademacher functions. By (*#), for any we[0,1] the following inequality
holds:

1Y cara(@) f(me™|dt < Clifl,,1-

T n20
Using the Khinchine inequality we get
Y le S < CEIIANZ, -

nz20

This completes the proof.

4. The construction of the power bounded operators. In this section
we construct a large family of power bounded operators on a Hilbert space.
The main result is the following:

TueoreM 1. Let ce T¥. Then there exists a linear operator T on a
Hilbert space H such that

T < K,
ca=(T"¢,n) for some ¢, neH,
K=K(||c||7¥)>l and K@—-1 ifa—0.

Proof. Let c,,=a(n, m)+b(n, m), where a: I' - I', b: [®— I® and
a(n, 0) =c,,

z la(n’ m)' < Ca Z |b(n9 m)l < C’ C= ”c"Tl

(see Proposition 1 (v)).
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For fel®(N) define
(e )(m)=f(k+n), k, neN;

(ﬂ*f)(n):{:)(n_k) for n>k,

for n<k.
It follows from the assumption that for all natural k
a(n+k,m—a(n,k+m)y=b(n, k+m—b(n+k, m;
the last equality means that for any fel'(N) we have
A f = a(B* )—T(a(f) = (b (N)-b(R* f).

Since T is uniformly bounded (with respect to k) on I'(N) and I®(N),
we obtain that for any ke N

Ae L(I', 'Y L(I®, I®(N)).
Hence by the interpolation (in fact, by the Schwarz inequality) we get
A, P> 2(N) and |4l <2C for any keN.

Now consider Hy,=I'(N)xI'(N) as a prehilbert space with the inner
product given by the following formula:

{f15 91)s (f2, 9200 = {S1, [2D +<a(f))+ 41, a(f2)+92),
(ﬁ’ gi)EHO, i= 1: 2,

where (-, -) is the usual scalar product on [%(N).
Let us define the operator S,: H,— H, by the formula

Si(f, 9 =(T* £, Tg).
We shall show now that ||S,]| < K, where
K? = max(1+1/2, 1+4C*+4C? §?)

for any g > 0.
This follows immediately from the inequalities

IS (s @2 = IIT* f1I2+lla(T* )+ T g2
< ISP +(14 12+ || T (@) + T g])*
<A +4CH|If112+la(f) +gll> + 28114 fl lla(f) +gll B~*.

Put T=3S, and & =(d,, 0), n=(0, J,); we then get ||T"| < K and c,
=<(T"¢, n> = a(n, 0).
. Remark. The idea of that construction was first given by G. Fendler
[4], who produces, in a special case, the uniformly bounded representation
of the free noncommutative group.
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5. The application to polynomially bounded operators on Hilbert space.
‘A direct consequence of Theorem 1 is the following

CoroLLARY 2. For any bounded sequence (c,), sup|c,| = 1, there exist an
operator T on some Hilbert space H and a constant C > 0 such that sup || T"|

< oo and that for any complex polynomial ¢ we have

lp(TIl = C| Y, (29cy-
n=20
Proof. By Corollary 1, if E={2" n=1,2,...}, then I*(E)c T~.
Hence, by Theorem 1, there exists an operator T such that
Cx if n= 2k,
0 if n# 2,
and ||T"| < C,. Therefore if ¢ = ). @(n)z", then

nz0

(T"¢, n>={

| Y #(29e] =Ke(DE mI < C.lio(D.

k=20

Corollary 2 implies the following inequality which was obtained by a
different method by V. V. Peller [13].

CoroLLARY 3. For any complex polynomial ¢ and any ¢ > 1

lglle > D(c) X 1927

nz0

Now we can state our application theorem.

THeOREM 2. Let ¢ =(c)el®(E), E={2"n=1,2,...} and T be a
power bounded operator such that

<Tué’ ") = Cyp, n=0.
If T is polynomially bounded, then ce I*(E).

Proof. If T is polynomially bounded, then for any polynomial ¢ by
Corollary 2 we get

1Y ¢(mey| < Kllgllo-
neE

Since E is the Sidon set, it follows that for any («,) € [ (E), |a,| < 1, there
exists a bounded Borel measure ue M(T) such that

g(n)=a, for neE and ||y|| < 2.

If we choose a, in such a way that

¢(n)cya, =|p(n)c,| for nek,
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then we get
Y lp(mMcd < K|lu*@llo < 2K |9l

20

This implies that the sequence (c,) belongs to the space of multipliers
from the disc algebra A (D) to I' (N). By the theorem of Paley [12], (c,)e /.

CoRrOLLARY 4. For any sequence c =(c)el®(E)\I*(E), E={2"n
=1,2,...}, the operator T = T, (existing by Theorem 1) is a power bounded
operator which is not polynomially bounded.
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