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Determination of concomitants is one of those foremost problems in
the theory of geometric objects which are of great importance for differ-
ential geometry. In this paper we will present some considerations con-
cerning scalar concomitants and consisting of a definition of a complete
and independent system of scalar concomitants for a given abstract
geometric object, and of certain relations between such systems and
decompositions of the fibre of the object into transitive fibres. These
considerations form a basis for the determination of transitive fibres
of the tensor #;u in a two-dimensional space.

1. Let @ be an abstract special geometric object with the transfor-
mation formula

(1.1) o' = F(w, L), weM, Le Ly,

and with the fibre M (cf. [3]).
Let ws denote a scalar corcomitant of object w by o,

(1.2) 06 =H(w), weM, oceNcR.

This concomitant is determined by a function H which maps fibre I
of w onto fibre N of the abstract scalar ¢. It is clear that function H is
constant on transitive fibres of object w (see [1]). Since the last property
is characteristic for scalar concomitants, we have the following

THEOREM 1.1. Function H(w): M — N < R determines scalar con-
comitants of an object w if and only if it is constant on tramsitive fibres of
this object.

Let
(1.3) o; = H(w), ¢=1,2,...,p,

denote system of p-scalar concomitants of object (1.1) with the fibres
RN,y Nyy ..., N,, respectively, where each N, <R (1 =1,2,...,p) is
determined by a function H,.
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As follows from theorem 1.1, each function ¢(s,, gy, ..., 0,) trans-
forming cartesian product M, X N, X ... X N, into a subset N of real num-
bers,

(1.4) P: XX ... XN, >R R,
determines a scalar concomitant of object w:
(1.5) 0 = H(w) = ¢(Hy(w), Hy(), ..., Hy(w)).

Definition 1.1. A scalar concomitant (1.2) is called dependent on
the system of scalar concomitants (1.3) if there exists a function ¢ of form
(1.4) such that (1.5) holds.

This definition, as well as definitions of a complete and of an inde-
pendent system of scalar concomitants (see definitions 1.2 and 3.1), are
not new, but we shall recall them for the convenience of the reader.

Definition 1.2. A system of scalar concomitants (1.3) of ,object
(1.1) will be called complete if every scalar concomitant of (1.1) is depen-
dent on scalar concomitants of (1.3).

2. If a system of scalar concomitants is known, then its transitive
fibres can be determined with the aid of theorem 2.1.

Let be given a system (1.3) of scalar concomitants of an object (1.1).
For every system of real numbers C,, C,,...,C, let us denote by
e, the following subset of the fibre It of object w:

’’’’’ Cp = {w: wegﬁ, H,L((O) = C‘i’ 'I: —_—-1,2, ...,p}.

THEOREM 2.1. If system (1.3) is complete, then each set M, ¢, ..., c, 8
either transitive fibre of w or is empty.

Proof. If the set (2.1) is not empty, there exists an element w,eIN
such that wge mtcl,oz,,,_,cp, ie. H(wy) =0C;y 2 =1,2,...,p.

Since functions H, are constant on transitive fibres of w, we have
the relation H;(w’') =C;, ¢+ = 1,2, ..., p, where o’ denotes a component
of w in a new coordinate system o' = F(w, L).

It is clear that imcl,cz,...,cp is an allowable set (cf. [2]). Let us denote
by Mw, the transitive fibre to which w, belongs. Since ﬁncl,oz,...,cp is
an allowable set and contains w,, it also contains Mw,, ’

(2.2) Mawy = <lmc'l,cz,...,(;'p-
" To prove the theorem it suffices to show that
(2.3) Mw, = Mo, 0, ..., -

Assume to the contrary that (2.3) does not hold, i.e. that there exists
w, which belongs to 93101,02,.”,% but not to Mw,:
(2.4) w1€5mcl,02,...,c

14

’ w, §Mw,.



Consider a function H on In,

..( \ ki, weMw,,
H ) =
kyy  weM— Moy,

where k, and k, are two different real numbers,
(2.5) k, # k,.

-~

Function H determines scalar concomitant &, ¢ = H(w), because
it is constant on transitive fibres of w. The scalar concomitant ¢ does
not depend on system (1.3), because each scalar concomitant dependent
on (1.3) is constant on M ¢, Cp While, according to (?.4), H (w) takes
two different values on ".T.thl,cz,“_,op: H(wy) =k, and H(w,) = k,.

This is a contradiction to assumption that system (1.3) is complete.
Thus (2.3) holds and theorem 2.1 is proved.

Theorem 2.1 leads to a result on the form of transitive fibres of w.

.....

THEOREM 2.2. If system (1.3) is complete, then every tramsitive fibre
of object (1.1) is equal to the set My, ¢, Cp? where C,, C,, ..., C, denote
some constants.

Proof. Let Mw, be the transitive fibre to which w, belongs. Put

(2.6) Cpy = Hi(wy), t=1,2,...,p.

Since the set ‘Jﬁcopcoz,m,cop is non-empty, it must be, by theorem 2.1,
the transitive fibre of w. Because to this set belongs w,, it must be equal
to the transitive fibre Mw,. Thus theorem 2.2 is proved.

Formulas (2.4) permit to find constants C,, C,, ..., C, which deter-
mine the transitive fibre to which the point w, belongs.

3. There exist many complete systems of scalar concomitants for
a given abstract object. Some concomitants of such a system can be
dependent on the others. A problem arises to choose a complete system
which would contain a minimum number of scalar concomitants. In
particular, it is important to find a system which does not contain de-
pendent concomitants. To that end we first define a concept of a de-
pendent concomitant system.

Definition 3.1. System (1.3) of scalar concomitants of object (1.1)
will be called dependent if one (at least) of concomitants of this system
is dependent on the others. In the opposite case the system will be called
independent.

Definition 3.2. If function H is constant, the scalar concomitant o
will be called #rivial.

A necessary condition for a system to be dependent is given by
the following
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THEOREM 3.1. If system (1.3) of mon-trivial scalar concomitants of
object (1.1) is dependent, then there exists a system of constants C,, C,, ..., O,
satisfying conditions

(3.1) CieM;,y, 1=1,2,...,p,

for which set EUICPCZ,.__,CP 18 empty.
Proof. Let system (1.3) be dependent. Assume that o, is depen-
dent on the others. Then there exists a function ¢ such that

Op = @(01y O3y «ory Op_1).

By the assumption, o, is a non-trivial concomitant, i.e., it takes
at least two different values k, and k,. Let C,,, C;,, ..., 0, ,_, denote the
system of real numbers for which function ¢ takes value k,. Then the
set Me,, cp.....0p,_q2 K2 18 empty. Constants Cyy, Chsy ..., Oy, Ky satisty
condition (3.1). The theorem is proved.

4. Examples. Let be given the Weyl density o’ = |J|w with the
fibre I = R. One of scalar concomitants of this density is the object o
determined by the function

Sgn w weR—{0
(4.1) H(w) = gnw, € {0},
0, w=0.

The set ! = {—1, 0, 1} is the fibre of ¢. The most general scalar
concomitant of w is determined by the function defined as follows:

C,y, w>0,

Hw) ={C,, o©=0, o=H(w).

Csy, <0,

The scalar ¢ forms a complete system of scalar concomitants of the
Weyl density, because each scalar concomitant ¢ is dependent on o.

In fact, this dependence is determined by the function ¢ defined
as follows: ¢(—1) = (3, ¢(0) = C,, (1) = C,. Then we have ¢ = ¢(0)
and H (o) = ¢(H ().

The trivial concomitant is determined by the function constant on
the fibre M, i.e., such that for all real numbers we have Hy(w) = C, weR,
and o, = Hy(w).

The trivial concomitant does not form a complete system, ¢ being
independent of it because there is no function ¢ which satisfies H(w)
= ¢(Hy(w)). It follows that every scalar concomitant of the Weyl den-
sity is dependent on (4.1).
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5. Transitive domains of temsor #;, in the two-dimensional space.
Let be given a tensor #;, in some point of a two-dimensional manifold
of class C,,

Gyw = AL AL AV,
The fibre of tensor ?;, is MM = K5,
Consider two covariant vectors formed by the contraction of ?,:

. 1 2
(5.2) v, i th, and 'vlg .

Put .
My = {2 11, MM, det|v,|| = 0},

1 2 1
EIRNI = {t;y : t;uemt’ v F# 0, v = x'U},

(5.3) I T
mlo = {tl”:t;_”egﬁ, v = 0, v #0},
1 2
Moo = {tay s 2.eM, v = v = 0}.

Subsets M., M,;, M,, and M,, are allowable sets of the fibre M of
tensor #;, in the two-dimensional space. In the paper [4] a complete
system of scalar concomitants for #;, in several allowable sets has been
determined. Making use of [4], we can determine transitive fibres for
tensor ?;, in the two-dimensional space.

It follows from theorem 1 in [4] that the most general scalar con-
comitant of tensor #;, in the allowable set I, is a function of the form

1 2 1 2

(5.4) ft:,) = qv(tﬁ, @, 0, gg),
where
—1—-1a
(5.5) . o = vt
oo o o

-1
and »* are contravariant vectors satisfying conditions
o —1
0,0 = 02.

g

By theorem 2.1 we infer that, in a two-dimensional space, every
set Me, c,.c,.c, Of the form

1 2 1 2
5.6) IM ={t},:8,eMy, o =C;, ©w =0C,, o =C;, w =C
( ) 01,02,03,04 { Aup Au 2y 1 1 1 2.’ 29 3 22 4}’

where C,, C,, C; and C, are arbitrary real numbers, is either the tran-

sitive fibre of tensor #;, or is empty. It can be proved that this set isnever

empty. For that purpose it is enough to show that the system of equations
1 2 1 2

(5.7) w=0, 0=0, 0=0 o=C0

11

has solutions for arbitrary values C,, C,,C,; and C,.
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It suffices to take the following values of the components of tensor #;,:
til = Oy, ﬁl = Oy, tiz =1-C,, t%z =1-0y,
(5.8)
téz = —Cu tgl = —Cy, téz = Cs, t§2 = (.
By [4] it is clear that the general scalar concomitant of #;, in the
allowable set Ik,, can have one of the three forms

) fsgng |w|sgng
(5°9) f(tlp) = q’(”) SgnQ’ gz I |g‘|5/2 ’ g 7& 07
(5.10) f(t) =e(x,7), ¢ =0, det [a,,] #0,
(5.11) f(%,) = @(x,n), ¢ =0, det [a,] #0,
where

111
(5.12) g2 1, "7 0,0,,,
11111
(5.13) = 8 thstls 62’ e €7 V,0,0,0,,,
111111
(5.14) W £ —t;”tf,ﬁtﬁat;',sms“"sﬂ“e”'s"“’e"selp’vefvav,vw'vs'vp,
a , 1

(5.15) all‘ == t;_#’v,,,
(5.16) v £ det[2¢,[143- a1,
(5.17) a%-a,, = 62,

and where ¢* and ¢,, are Ricei symbols. Scalar 5 is a proportional coeffi-
cient of a,, (in the case of det[a;,] = 0) and ¢31,5.

If #;,eM,, and g # 0, then, according to theorem 2.1, in a two-di-
mensional space every set

(5'18) 93?’!,:}:1,01,02

- fsgng jw|sgng
={t,1,‘2t;_,,€93t,,1, g #0, sgn g = +1, g? = Cy, W = Oy,
where », C, and C, are arbitrary real numbers, is either the transitive
fibre of temsor #;, or is empty. Thus we can determine constants (for
example sgng = 1, 0, < 0) such that the set M, ;¢ ¢, Wil be empty.
Assuming that C,-sgng > 0, the system

fsgng _ jwisgng _
2 = U W— 2

(5.19) sgng = 41,

has a solution. One of solutions is
til = C1Sgnt;27 til = Czsgntéz' |t;2|_1/21 tiz =0,
(5.20) #, =1—Cysgnty,, 1t =0, 1 =x —C,sgnty,

téz #0, tgz = 0.
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If #;,eM,,, ¢ =0 and det[a;,] # 0, then every set
(5.21) M,, = {t1,: t2,eMy, g = 0, det[a,,] # 0, det[2t;[113], - a*] = 7},

where » and 7 are arbitrary real numbers, is a transitive fibre of tensor ¢,
(in a two-dimensional space). It is clear that for arbitrary » and v the
tensor ?;,, whose components are
th, =0, = —1, t}z =1, #,= 1,
(5.22) .
t;l =1, =%, 1y=0, t3 = -1,
is an element of IN,..
In the case t;,¢M,,, g =0 and det[a;,] = 0, every set
1 1
(5.23) mt,"] = {t;'l‘ : t;‘qut,d, g = 0, det [a;.,,] = 0, a;l“ = 7)'?),1"0”},
where » and 5 are arbitrary real numbers fulfilling condition » # 3% —1,
is a transitive fibre of tensor #;, (in a two-dimensional space). One of
the points of this family of transitive fibres is
t}1=777 tf1=07 ﬂz:o, ti2=1_77’
(5.24) . \ .
=0, ) =x—mn, b =0, 1 =0.
For » = 35p—1 we obtain two families of transitive fibres for arbi-
trary 7: one for #}, = 0, and the other for #3, 7 0 (calculated in coordinate

systems in which o, = 1 and féz = 0) (see [4], p. 21).

Similarly, with the aid of theorem 2.1 and the forms of scalar con-
comitants of #;,eMM,, (see [4]), the set NM,, can be decomposed into tran-
sitive fibres.

Allowable set IR,, can be decomposed into five transitive fibres
(see [4]). -
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