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COMPOSITIONS OF CONFLUENT MAPPINGS
AND SOME OTHER CLASSES OF FUNCTIONS

BY

A. LELEK axp DAVID R. READ (HOUSTON, TEXAS)

In this paper * we assume all spaces to be compact metric and all
mappings to be surjective.

1. Preliminaries. Given a space X and a sequence A,, A,,... of
subsets of X, we define Ls A, to be the set of all points ze¢ X for which

n—>00

there exist points z,e¢ X such that

lim #, = and Tye Ay, (k=1,2,...),
k—00

where n, < n, < ... is a sequence of positive integers. The following pro-
position can be obtained as an easy consequence of some well-known
theorems (see [4], p. 57-61):

1.1. A mapping f: X—Y is continuous if and only if
lim y, =y implies Ls f~'(y,) < f~'(y).

n—»oo n—»00
As usual, we say that a continuous mapping is open provided it
transforms open sets into open sets.
1.2. A mapping f: X—>Y is open if and only if
lim y, =y implies Ls f~'(y,) = f'(y)-

—>00 n—>00

Proof. If f is open, the implication holds (see [4], p. 67-68). Now,
assume it holds and let U be an open subset of X. Suppose ze¢ U and
f(z) = y¢ Int f(U). Then there exist points y,e Y\ f(U) such that lim ¥,
= 4. Hence ne

F7a) = FTHYNAD)] = XINfTf(U) « INU

* The second author’s contribution to this paper was pa.rtia.lly:supported by
National Science Foundation Science Faculty Fellowship.
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and X\ U being closed, we conclude that
Ls f~'(y,) €« X\U < X\{z},

n—>oo

zef~H YN\ Ls f(¥a),

n-—>o00

which is impossible. Thus yeInt f(U) and f(U) < Int f(U), i.e. the set
f(U) is open in Y. Moreover, by 1.1, f is continuous, and, therefore, it
is open.

The next proposition states a well-known fact (see [9], p. 10):

13. If f: X—>Y 4is continuous, ye Y and U = X 18 an open set such
that f~'(y) = U, then yeInt f(U).

Finally, let us yet recall that a continuous mapping is said to be
monotone (0-dimensional) provided the inverses of points under it are
connected (0-dimensional, respectively).

whence

2. Quasi-interior mappings. We say that a continuous mapping
f: X—Y is quasi-interior at a point ye Y provided, for each open set U =« X
such that a component of f~'(y) is contained in U, we have ye Int f(U).
A continuous mapping f: X—Y is called quasi-interior provided f is quasi-
-interior at each point of Y (see [9], p. 9). One can use 1.3 to prove the
following statement (ibidem):

2.1. All open mappings and all monotone mappings are quasi-interior.
An analogue of 1.2 is also possible (1):

2.2. A continuous mapping f: X—Y is quasi-interior at ye Y if and
only if lim y, = y implies that Ls f~'(y,) meets each component of f~(y).

n—>00 N—»00
Proof. If f is quasi-interior at ¥y and C is a component of f~(y), then,

for each open neighborhood U of C in X, the set f(U) is a neighborhood
of y in Y, so that f(U) contains some points y,. Hence U intersects some
sets f~!(y,) and, taking points from these sets close enough to C, we get

CnLsfy, #9.
n—»oo
Assume now the condition is satisfied and U is an open subset of X
containing a component C of f~'(y). If y¢ Int f(U), then there would
exist points y,e¢ Y\ f(U) such that lim y, = y. Hence

>0

fy,) « X\U and Lsf(y,)c X\U < X\C,

fn—>o00

which is impossible. Thus ye Int f(U).

(1) The condition which appears in 2.2 has been suggested to us by D. Zaremba
who in [10] investigates some metric properties of quasi-interior mappings.
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2.3. THEOREM. If f: X—>Y and g: Y—>Z are continuous mappings
such that g is 0-dimensional and gf i8 quasi-interior, then g is open.

Proof. Let U c Y be open and let ye U. Put z = g(y) and take a com-
ponent C of f~!(y). Then C = f~'¢~!(2) and let C’ be the component of
f~'g7*(#) which contains C. We have gf(C’') ={z}, whence f(C') = g~!(2).
But since g is 0-dimensional, f(C’) is degenerate, and so f(C') = {y}. Thus
O cf(y) = f~'¢g7'(2) and €' must be a component of f~'(y). In other
words, we have ¢’ = (. Since

¢ =Ccfy) (),

where f~!(U) is open and gf is quasi-interior, we conclude that
ze Intgff ' (U) = Intg(U),

which implies that g(U) < Intg(U), i.e. the set g(U) is open.

Combining a well-known factorization theorem (see [8], p. 141)
with 2.3, we obtain the following corollary (cf. [9], p. 14):

2.4. COROLLARY. If h i3 a quasi-interior mapping, then h = gf, where f
18 monotone and g i8 0-dimensional and open.

A continuous mapping f: X—Y is called confluent provided, for each
continuum K < Y and each component ¢ of f~'(K), we have f(C) = K
{see [1], p. 213). One knows that the following two propositions are true
{ibidem):

2.5. All open mappings and all monotone mappings are confluent.

26. If f: X—>Y and g: Y->Z are confluent mappings, then gf is
confluent.

By virtue of 2.4, 2.5 and 2.6, we get our next corollary:

2.7. COROLLARY. All quasi-interior mappings are confluent.

The theorem which follows is suggested by 2.6. In certain particular
cases, it can be derived from some results of Whyburn (see [9], p. 12).

2.8. THEOREM. If f: XY and g: Y—Z are quasi-interior mappings,
then gf vs quasi-interior.

Proof. Let z¢ Z and let U = X be an open set such that there exists
a component C of (gf)~'(z) satisfying C = U. Then f(0) is a continuum
and gf(C) = {2}, whence f(C) = ¢g~'(z). Let C' be the component of g~*(z)
which contains f(C). We have

Ccf7f(0) = fHC) = fg7(2) = (af) ' ()
and, consequently, C is a component of f~*(C"). Since f is confluent accord-
ing to 2.7, it follows that f(C) = C’. Given any point ye C’, let z¢ C be

& point such that f(z) = y and let C, be the component of f~!(y) which
contains x. Thus

CNnC, #@ and C,cf'(y)cf ),
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whence C, = C = U. Since f is quasi-interior, we obtain ye Int f(U) for
each ye C'. This means that ¢’ c Int f(U). Now, ¢ being quasi-interior,
we get

ze Int g[Int f(U)] = Int gf(U).

3. OM-mappings and MO-mappings. A continuous mapping & is said
to be an O M-mapping (or an MO-mapping) provided there exist mappings f
and ¢ such that h = gf, where f is monotone and ¢ is open (or f is open
and ¢ is monotone, respectively). Using 2.1, 2.4 and 2.8, we obtain the
following three corollaries, the first of them being essentially due to Why-
burn [9]:

3.1. CorOLLARY. If h is a continuous mapping, then the following
three conditions are equivalent to each other:

(1) h ts8 quasi-interior,
(ii) A 78 an OM-mapping,

(iii) h s representable as the composition h = gf of two mappings such
that f is monotone and g is 0-dimensional and open.

3.2. CorOLLARY. All MO-mappings are OM-mappings.

3.3. COROLLARY. If n,, ..., N, 18 & sequence of 0’s and 1’s, let us distin-
guish a class of continuous mappings f which are representable as composi-
tions f = f, ... f, such that f; is open or monotone depending on whether
ng; = 0 or m; =1, respectively (¢ =1, ..., k). Then each such a class is equal
to one of the following four classes of mappings: monotone mappings, open
mappings, MO-mappings, and OM-mappings.

3.4. Example. There exists a mapping h: [0,1]—-[0, 1] such that h
i8¢ an OM-mapping and h is not an MO-mapping.

Proof. We define & by the following formula:

3z for 0<zr <,
h(z) ={2—3z for }<z<4,
0 for $<a<1.

Then we can write h = gf, where f and g are defined by the formulae:
3z for 0<o<
fl@) =’ 8
1 for $<o<1;
2x for 0<z< 3,
g(x) =
2—2x for }<a<1.

Clearly, f is monotone and g is open. Thus A is an OM-mapping;
to prove that A is not an MO-mapping, let us suppose, on the
contrary, that h = g,f,, where f, is open and ¢, is monotone.
As is well-known (see [4], p. 293, and [8], p. 147), open mappings
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transform arcs into arcs and end-points into end-points. Then 4 = f,([0, 1])
is an arc and b = fy(1) is an end-point of A. Let U = {x: 2/3 < v < 1}.
Since f, is open, the set f,(U) is open in A, and the set V = f;'f,(U)
is open in [0, 1]. The point a = f,(0) is also an end-point of 4 with g,(a)
= h(0) = h(1) = go(b). Since g, is monotone, if « and b were different
end-points of A, we would have 4 < g;'g,(a), whence

h([0,1]) = go(4) = {go(a)} = {A(0)} = {0},

which is impossible. Consequently, we have ¢ = b and thus

0cfo'(d) =fo'fo(1) = f5'fo(U) =V,
which means that V is a neighborhood of 0 in [0, 1] and
h(V) = gofofoa ' fo(U) = gofo(U) = k(U) = {0},
which is not the case, h being constant on no neighborhood of 0.

3.5. Example. There exist MO-mappings f,g: [0,1]1>[0,1] such
that the composition gf is not an MO-mapping.

Proof. Take f and g as in 3.4. Since f is monotone and ¢ is open,
both f and g are MO-mappings. But their composition & is not an MO-
-mapping.

3.6. Example. There exists a mapping f: X—Y such that X and Y
are arc-like continua, f is confluent and f is not an OM-mapping.

Proof. Let X be the subset of the Euclidean plane defined by the
formula

X ={w1):lz|<1}u {(1,9): lyl<1} U{(w, sin

1
_1:1<w<2,
and let us consider an equivalence relation R in X which we define by
the following formula:

R ={(¢t, 1), (1, t): pI<1)o{(@,n,1): B<1)ou{p,p): peX}.

It is not difficult to see that both the space X and the quotient space
Y = X/R are arc-like continua. We define f to be the natural projection
of X onto Y. Because there are only two types of continua contained
in Y, namely, ares and copies of Y itself, a rather apparent argument
can be used to show that f is confluent. On the other hand, the set U
= {(x,1): || < 1} is open in X and the point p = (0, 1) belongs to U.
The set {p} being a component of f~'f(p) and the interior of f(U) in ¥
being empty, we conclude that f is not quasi-interior at f(p). Thus, by 3.1,
f 1s not an OM-mapping.

Rematk. It follows from 5.2 of this paper that the continuum Y,
hence also the continuum X, as they appear in 3.6, cannot be made locally
connected.
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4. Weakly and locally confluent mappings. We say that a continuous
mapping f: X—Y is weakly confluent (?) provided, for each continuum
K c Y, there exists a component ¢ of f~'(K) such that f(C) = K. We
say that a continuous mapping f: X—Y is locally confluent at a point
ye Y provided there exists a closed neighborhood V of ¥y in Y such that
fIf~Y(V) is a confluent mapping of f~'(V) onto V. A continuous mapping
f: X—=Y is called locally confluent provided f is locally confluent at each
point of Y (see [3], p. 239).

4.1. Example. There exists a mapping f: [0,11—-[0, 1] such that f
is weakly confluent and f is not locally confluent.

Proof. The function f defined by the formula

2x for 0 <z <4,
fl@) =1,
s —x for <1,

obviously, is a weakly confluent mapping, but f is not locally confluent at 3.

Remark. The weak confluency of the function from 4.1 is a special
case of a more general phenomenon. It is known that all continuous
mappings of continua onto arc-like continua are weakly confluent (see [6],
Theorem 11).

4.2. Example. There exists a mapping f: X—Y of an arc-like con-
tinuum X onto a iriod-like continuum Y such that f is locally confluent
and f is not weakly confluent.

Proof. An example of this kind can be obtained by a modification
of the example described in 3.6 above. Let X be the set

1
X = {(z,2): —1<x<2}u{(siny—2—,y): 2 <y<3}u

1
ui{(Z2,9): —1<y<2}u{(m,sin 2):2<x<3},

and let R be the following equivalence relation:
R ={(t,2),(2,9): —1<t<2}u
Ul((2’ t), (¢, 2)): —1<t< 2} v{(p,p): pe X}.

Clearly, X is an arc-like continuum and Y = X/R is a triod-like
continuum with the projection f of X onto Y being locally confluent.
Now, denoting by X, and X, the intersections of X with the strips of
the plane determined by the inequalities |#|<<1 and |y|<1, respectively,

(3) The class of weakly confluent mappings has been introduced by the first
author in [5] where almost all results of this paper are announced. The second author,
in his doctoral dissertation [6], establishes, among other things, most results which
constitute Sections 4 and 5 here.
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we see that the set K = f(X, uX,) is a continuum contained in Y. The
components of f~!(K) are X, and X, but f(X;) # K for ¢ = 1, 2. Thus f
is not weakly confluent.

Rematks. A further modification leads to an example of a mapping
f'+ X’'->Y' such that X' and Y’ are arc-like continua, f’ is locally confluent
and f’ is not confluent. Namely, one can take X' to be the intersection
of the continuum X from 4.2 with the half-plane y < 2, and put ¥’ = f(X’)
and f' = f|X'. The mapping f’, however, is weakly confluent. Another
easy modification of 4.2 yields a locally confluent mapping which is not
weakly confluent and transforms an arcwise connected continuum onto an
arcwise connected continuum. We observe that the latter continuum cannot
be made locally connected, by 4.3 and 5.2, or hereditarily arcwise connected,
by 5.3.

Using 2.7, 3.1, 3.2, 3.4, 3.6, 4.1 and 4.2, we get this corollary:

4.3. COROLLARY. The following implications hold for mappings and
none of them can be reversed:

(monotone) (weakly confluent)
(M0O)=> (0M)=> (confluent)

(open) (locally confluent)
(quasi-interior)

Remark. Most of the above-mentioned seven classes of mappings
are multiplicative, i.e. preserved by taking the compositions of their
elements. More precisely, it follows from 2.6, 2.8 and 4.4 that all these
classes are multiplicative except two — the class of MO-mappings and the
class of locally confluent mappings — which are not multiplicative, by 3.5
and 4.5, respectively.

44. If f: XY and g: Y—Z are weakly confluent mappings, then gf
18 weakly confluent.

Proof. Let K < Z be a continuum. There exists a component C’ of
g~} (K) such that g(C’) = K. Again, there exists a component C of f~1(C")
such that f(C) = C'. Thus gf(C) = K, and, obviously, C is a component
of (gf)~(K). .

4.5. Example. There exists a locally confluent mapping f: XY,
where X is an arc-like continuum, and a monolone mapping g: Y—~>Z
such that the composition gf is neither weakly confluent nor locally confluent.

Proof. Take X and f as defined in 4.2. Let 4 = {(=, 2): |z| <1}
and let us consider an equivalence relation R’ in ¥ = f(X) whose only
non-degenerate equivalence class is the set f(A4). It is rather easy to see
that the quotient space Z = Y /R’ and the natural projection ¢g: Y—>Z
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satisfy the requirements of 4.5. Specifically, the mapping gf is not weakly
confluent on the inverse image of any neighborhood of the point gf(A4)
in Z.

4.6. If f: X—>Y is a confluent mapping and g: Y—Z 1is a locally
confluent mapping, then gf is locally confluent.

Proof. Let ze Z be a point and let V be a closed neighborhood of 2z
in Z such that g, = glg~'(V) is confluent. Let K = V be a continuum and
let C be a component of h~'(K), where h = (gf)l(gf)~'(V). Then f(C)
c ¢, '(K) and, denoting by C’ the component of g;'(K) which contains
f(0C), we get

Cc ff(0) = fHC) = flgg ' (K) = b7 (K),

whence C is a component of f~!(C’). Since f and g, are confluent, we con-
clude that

h(C) = gf(C) = g(C') = go(C") = K,

which means that k is confluent. Thus gf is locally confluent at 2, and 2z
being arbitrary, the proof of 4.6 is complete.

4.7. If f: X—>Y s a weakly confluent (locally confluent) mapping
and B < Y is a closed subset, then the mapping

fif'(B): f{(B)~>B

is weakly confluent (locally confluent, respectively).

Proof. Write f, = f|f~!(B) and assume f is weakly confluent. Then,
given a continuum K < B, there exists a component C of f~'(K) such
that f(C) = K. But f;!(K) = f~'(K) and f,(C) = f(C). Thus f, is weakly
confluent.

Assume now that f is locally confluent and let V <« Y be a closed
subset such that the mapping ¢ = f|f~'(V) is confluent. Put V, = BNV
and g, = folfy'(V,). Given a continuum K < V, and a component C of
g5 ' (K), we see that

Ccfi! (Vo) =fUB)Nf (Vo) =f BNV, =f1(Vy) = f(V),
whence f(C) = g(C). On the other hand, we have
9: (K) = (Vo) nfe (K) = fo 1 (K) = f~1(K) = f (V) nf Y (K) =g~ (K),

which implies g(C) = K since g is confluent. Thus g¢,(C) = f(C) = K,
and the mapping g, is confluent. Consequently, the mapping f, is locally
confluent.

5. Mappings onto some special spaces. Let us recall that a space X
is said to be connected im kleinen at a point ze X provided each neighbor-
hood of = contains a connected closed neighborhood of # in X. A space
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is locally connected if and only if it is connected im kleinen at each of
its points. Some theorems (see [1], p. 215, and [9], p. 14; cf. also [7],
p. 140, and [8], p. 153) are known to insure that all confluent mappings
of locally connected continua must be OM-mappings. In the theorem
and the corollary which follow, the latter statement is to an extent localized
and generalized.

5.1. THEOREM. If f: X—>Y 4is locally confluent at ye Y and Y is
connected im kleinen at y, then f is quasi-interior at y.

Proof. Suppose, on the contrary, that f is not quasi-interior at y,
and let U < X be an open set such that a component C of f~'(y) is con-
tained in U and y ¢ Intf(U). Furthermore, let V be a closed neighborhood
of ¥y in Y such that the mapping g = fif~'(V) is confluent. Since Y is
connected im kleinen at y, there exist continua K, < Y such that K, ,
cK,cViorn=1,2,...and

61 K, = F} Int(K,) = {3},

whence K,\f(U) #@ for n =1,2,... We have C c f~!(y) c f1(K,)
and let us denote by C, the component of f~!(K,) which contains C. It
follows from the inclusion f~(K,,,) < f~'(K,) that C,,, = C, for n =1,
2, ... Consequently, the common part ¢’ of the decreasing sequence of
continua C, is itself a continuum and C < C’. Moreover, we get

¢ = 0ue NI E) = (A K =170,

which yields ¢’ = ¢. On thé other hand, we have f~'(K,) = g ! (K,),
which implies ¢g(C,) = K,, since ¢ is confluent. Thus f(C,) = ¢(C,) = K,,
and

FICNU) = f(CN(U) = K Nf(U) # 9,

whence O,\NU # O for n =1,2,... The non-empty compact sets C,\U
also form a decreasing sequence so that their common part is non-empty;
we conclude that

C\U =C0\U =N (C,\TU) #0,
n=1

which contradicts the assumption that C = U, and the proof of 5.1 is
complete.

5.2. COoROLLARY. All locally confluent mappings onto locally connected
spaces are OM-mappings.

We say that a space is hereditarily arcwise connected provided each
of its subcontinua is arcwise connected.



110 A. LELEK AND D. R. READ

3.3. All locally confluent mappings onto hereditarily arcwise connected
spaces are confluent.

Proof. Let f: X—Y be such a mapping. Given a continuum K < Y
and a component C of f~!(K), let us select a point x,¢ C. For each point
ye K, there exists an arc A < K joining f(x,) and y. By 4.7, the mapping
fo = fIf'(4) is locally confluent. Hence, by 4.3 and 5.2, f, is confluent.
Let C, be the component of f;'(A) which contains x,. Then C, = f~'(4)
c f7Y(K) and f(C,) = fo(C,) = A. It follows that O, = € and ye A < f(0C).
Thus K < f(C), whence f(C) = K, and the proof of 5.3 is complete.

We say that a space is hereditarily unicoherent provided the common
part of each two of its subcontinua is connected.

S5.4. THEOREM. If f: X—Y is a mapping, Y is hereditarily unicoherent
and ¥ =Y, uY,, where Y, and Y, are continua such that the mappings
fIf~Y(X,) and fIf~1(X,) are confluent, then f is confluent.

Proof. Write f; =f|f~"(Y;) (+ =1,2) and, given a continuum
K c Y and a component C of f~!(K), let us take a point z,e . Without
loss of generality, we can assume that f(x,)e Y,. Then K nY, is a conti-
nuum containing f,(#,) and since f, is confluent, the component C, of
fi'(K n'Y,) containing x, satisfies f,(C,) = KNY,. We have C, c f~'(K),
whence C, = C. If K c Y,, we get

K =KnY, = f,(C,) =f(C1) = f(C),

which implies f(C) = K.If K\Y, # O, there exists a pointye KNY, NY,.
Let z;¢ C, be a point such that f,(x;) = y. Then K nY, is a continuum
containing y = f(x,) = f,(«;) and since f; is confluent, the component C,
of f;'(K nY,) containing x, satisfies f,(C,) = KNY,. We have C, = C,
whence

K =(KnY,)u(KnY,) = fi(0,) uf(Cs) = f(C,) uf(C,) = f(0),

and so f(C) = K again. Thus f is confluent.

5.5. COROLLARY. If f: X—Y is a mapping, Y is hereditarily unicoherent
and ¥ =Y,v...uXY,, where Y, are continua such that the mappings
flf %(Y,) ¢ =1,...,n) are confluent, then f is confluent.

RemaTtks. Because of the existence of non-confluent locally confluent
mappings onto hereditarily unicoherent continua, according to 4.2, the
connectedness of the sets Y; cannot be removed from 5.4 and 5.5. Also,
the hereditary unicoherence of Y is an essential hypothesis in 5.4, by
5.6 of this paper. However, no condition of the connectedness or unico-
herence is needed in a theorem being an analogue of 5.4 for OM-mappings
(see [6], Theorem 5).

5.6. Example. There exists a mapping f: X—>Y = Y,UY,, where X,
Y, Y,, Y, and Y,NnY, are hereditarily arcwise connected continua such
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that the mappings f|f~1(Y,) and f|f~'(Y,) are confluent and f is neither
weakly confluent nor locally confluent.

Proof. If p and ¢ are points of the plane, we denote by pq the straight-
-line segment with end-points p and ¢q. Let p, = (1, 0), ¢, = (0, 1) and
P, = (1+n"%0) forn =1,2,... We define the continuum M by the for-
mula

M = poqo Y U Pndos

n=l

and let ¢ be the symmetry of the plane defined by ¢[(z, ¥)] = (—, ¥).
Let M, and M, be the continua

M, =MUU Pyu_1Psn and M, =M PypPansry

n=1 n=1

and let us put X = M, uM, vp(M, uM,). Now, let R be the equivalence
relation in X defined by the following formula:

R ={(p, 9(D)): Depete} V{(@(p); p): DeDegy) V{(p,p): e X}.

A rather routine argument shows that both X and the quotient
space Y = X /R are hereditarily arcwise connected continua. We define f
to be the natural projection and observe that the continua Y; = f[M; v
ve(M,)] (¢ =1,2) also are hereditarily arcwise connected as well as
their intersection. Moreover, if a continuum K < ¥Y; meets the limit arc
A = f(p,q,) and K is not contained in 4, then K contains the junction
point f(q,) and, consequently, the set f~!(K) is a continuum. But the
mapping f|f~'(A4) is open and the mapping f|f~'(¥;\4) is a homeo-
morphism, which implies that f|f~!(Y;) (¢ = 1, 2) is confluent. The seg-
ments P,p, and ¢(p,p,) are components of the set f~!(K,), where

Kn=f(1’o_P;)Uf¢(M) (n=1,2,...),

and none of them is mapped onto K, by f. Since K, are arcs converging
to the point f(p,), we see that f is not weakly confluent on the inverse
image of any neighborhood of f(p,) in Y.

3.7. A continuum Y is hereditarily indecomposable if and only if each
continuous mapping of a continuum onto Y is confluent.

Proof. If Y is hereditarily indecomposable, the condition from 5.7
is satisfied (see [2], p. 243). Assume it is satisfied and suppose, by the
way of contradiction, that Y is not hereditarily indecomposable. This
means there exist subcontinua K and L of Y such that the sets K\L,
INK and K NL are non-empty. Let p,e L\K be a point and let us take
a topological copy L’ of L such that L’ is disjoint with Y. Consider a homeo-
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morphism h: L—L’ and the space Y UL’ in which one pair of points,
namely p, and h(p,), have been identified. Denote by X the resulting
quotient space. Putting

x for ze Y,

(@) = h='(x) for xe L,

we define a continuous mapping f: X—Y of the continuum X onto Y.
Let ge K nL and let C be the component of f~!(K) containing k(q). Since
C c X\f!(p,), we get C = L', whence

KENf(0) = KNB~Y(C) > ENL # 0,

which contradicts the assumption that f is confluent. Thus Y is hereditarily
indecomposable.
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