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EXISTENCE OF SIDON SETS OF FIRST KIND
IN LCA GROUPS

BY

J. FLOREK (WROCLAW)

Let G be a locally compact abelian group, I its dual, and A a subset of
I'. We shall apply a multiplicative notation for I". The following definitions
have been introduced by Déchamps-Gondim.

DEeFiNiTION 1 ([2] and [3]). Let K = G and C > 0. A pair (K, C) is said
to be associated with A if every function @ on A, |P|, < 1, is the restriction
to A of the Fourier-Stieltjes transform of a Radon measure u on G with
suppu < K and ||yl <C.

DEeriNITION 2 ([3]). A is called a Sidon set of first kind if there exists a
constant C > 0 such that for every compact neighbourhood K = G there
exists a finite set 4 — A for which the pair (K, C) is associated with A\ A.

Obviously, every infinite Sidon set (also a Sidon set of first kind) is
unbounded (i.e., it is not contained in any compact set).

It is well known that every infinite set of an abelian discrete group
contains an infinite Sidon set with constant 2 (see [5]). In this paper we will
prove that if G is metrizable, then every unbounded subset of I" contains an
infinite Sidon set of first kind. This result is known for the group of real
numbers ([6], Chapter VI, Proposition 1).

LEMMA. Let P be an unbounded subset of I' and C > 2. If the set
{y2eT: ye P} is unbounded, then for every compact neighbourhood K of G
there exists an infinite set A — P with the following property:

every function ® on A, |P|, < 1, is the restriction to A of the Fourier-

Stieltjes transform of a positive Radon measure pu on G such that suppu < K
and ||yl < C.

Proof. Let K be a compact neighbourhood in G and ¢ > 0. Put

1

f = mlxa

where | -| denotes the Haar measure and yy is the characteristic function of K.
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Since feCo(IN), the sets

K, = {yer: 7o) > ;6,.}

are compact (n =1, 2, ..). We shall define {y,} 2, = P by induction in the
following way:
@ 71, 7%¢K1;

(") Y+ 1> ‘yvzﬁ-l ¢Kn+l.E3o Where En = l_[ {yi’ Yi 5 e}-

i=1

Since f is positive, K, are symmetric, and therefore y,.}; ¢ K, ., ' E3. We shall
show that A = |y}, has the desired property. Let & be a hermitian

function on AuA~?! (e, ®(A) =47 for AeAd), |9, <3} and 4,
= {91, .-+» Yn) . By (i) and (ii), 4, is asymmetric and has no element of rank 2.
We form the Riesz product

R,(x) =[] (1+2()7(0)+2(1)y(x)

Ye Ay

and set g, = R, f. Since
Rx= Y [Jlewi,

-1 AeF
Fc Apua, €

where the summation is taken over asymmetric sets, we have

=R, N W= [1eWS(ITH)

Fc A,,uA 1 AeF ieF

(for F=Q we set [[®(4) =1 and [] 4 =e). We shall prove the following

Aep Aeg
inequalities:
1
(a) 1=gn+1(e) <|t—gnl(e)l+7 () m=21, [1-gy(e< %
l n
(b) '¢(?n+l) gn+l(?n+l)l Il gn(e)l+ (2> (n)>la

[P (1) —g1 (vl <

O\Im

© max{| P —Gn+1 O vEA,}

< max {|®(y) — g, (Y veA..}+%G)n (n=1).
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(a) We compute

N—Gpsr@ =]1— ¥ [Ie@ (T2

-1
FCA"+1UA"+1 AeF AeF

<it=ga@+ ¥ [F(IT4 " yads))

Fc Aqua;l 4

+ Y AITA  vmsa)]

Fc Apua, 1 AeF

efl1Y\ .
S_ A —Yn )
6(2) +11=ga(e)

where the last inequality follows from (ii) and the fact that there are at most
3" asymmetric subsets of A, U A, !. By (i) we have

1—g, (el =_I1—¢(~/1)f(vf‘)—¢(y;‘)f(y,)—f(e)|
R A RS g

(b) To prove the first inequality we write
1D (Yt 1) —Gns 1 (Vns1)l

= [@Gm)— T T1ODF (raes(TT47Y)

Fedgs ol AeF ieF

<P )= P X TT2W (127

Fe AguaT ! AcF AeF

+ X A e+ 2 JATT A 9200

FcAyua, 1 AeF FcAgun, 1 4eF

efl1Y"
<|1-4 ~{=).

The second inequality is obtained as follows:
19 (7)) —G1 ()| = |®(y)—P () f (}’1 R AR FACHE A

<IFEDI+1f ()l <
(c) Analogously we find

max {|®(y)—Gn+ 1 (VI: 7€ A,}
= max {|®(y)— y® [Te@d S]] A7Y): veq,)

FcdApyq u/l—+ll AeF AeF

<max {jo()—- Y ncp(l)f(ynl N ve .}

Fc A, uA AeF AeF
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+max{ Y° If(vni"v..n)lr YE An}

Fcagua !
+max{ Y |f(rI14 'yads): veda)
Fe Agua, 1 AeF

l n
< max {|®(y)—§,(): veA..}+%(§)-

From conditions (a){c) we infer that

_ ~ € - 4] n 8
1gally = 1ga(€) < 1+]1—=g,(e)] < 1+3 Z ( ) +35

had &
LG -5
Let g be a *-weak accumulation point of the measures g,e L', (G). Then

geM, (G), suppg = K, |lgll < 1+¢/3, and |§(y)—D(y)| < ¢/3 for yeA. Thus
for any Y e L*(A) there exists a positive measure u such that

O\Im

max {|®(y)—g.(V|: yeA,] <

2 €
la— WILOO(A) Mll,w(,{)’ llull < 2 (l +'§)|'l’|um and suppp K.

We apply the foregoing inductively to ¥, =y, ¥, =y, —ji;, etc. to obtain
Uy, My, etc. in M, (G) such that

Ik_il ﬁ"—wlw = V¥l < <2£> ¥ >
z n n k-1
|2 mll < X llml < 2(1+§)|¢|® Y (%) .
k=1 k=1 k=1

The *-weak sum u= ) p, has the desired properties.
k=1
THEOREM. Let G be metrizable and C > 2. Then every unbounded set P = I'

contains an infinite Sidon set of first kind with constant C.

Proof. Since G is metrizable, there exists a basis {K,},»; of compact
neighbourhoods of the neutral element in G. Let us fix n > 1. First we will
find an infinite set A, c P such that (K,, C) is associated with A,.

Suppose that P < H, where H is a subgroup of I' generated by a
compact neighbourhood. Hence H ~ R™ xZ" xF, where F is a compact
group ([4], Theorem (9.8)). Since P is not contained in any compact set, the
same holds for the projection of P on R™ or for that on Z". Hence
{y*eT: ye P} is not contained in any compact set and by the Lemma there
exists an infinite set A, = P such that (K,, C) is associated with A,.

Let us consider the second case: P is not contained in any subgroup
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He A, where 4 denotes the family of all subgroups of I' generated by a
compact neighbourhood. For every He A, H* (the annihilator of H) is a
compact subgroup of G and

N H' =e.

Hea

Thus there exists Hye 4 such that Hy < K,,. Let
Po = {AEF/HO: Ar\l);é ®}

Then P, is an infinite subset of the discrete group I'/H,. There exists an
infinite set S, = P, such that (I'/H,, 2) is associated with S, (see [5]). Let
A, < P be such that card(4,"A) =1 for AeS; and A, A =Q for A¢S,.
Since Hy < K,, and for any ue M (Hg) the transform f is constant on cosets
of H,, the set A, is associated with (K,, C).

Thus we obtain a sequence of sets {A,},-, associated with (K,, C) (n
=1, 2, ...). Without loss of generality we can assume that A,,, < A4, for n
> 1. Let S = {A,},>,, where A,eA,, 4 # A; for i 5 j. It is obvious that S is
an infinite Sidon set of first kind with constant C.

Remark. For discrete groups this theorem is an immediate consequence
of the following result of Bourgain: every Sidon set tending to infinity is of
first kind ([1], Corollary 2).
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