COLLOQUIUM MATHEMATICUM

VOL. XV 1966 FASC. 2

THE EMBEDDING OF A LINEAR DISCRETE FLOW
IN A CONTINUOUS FLOW

BY

W.R. UTZ (COLUMBIA, MISSOURI)

1. Introduction. Let X be a topological space and let R denote
the reals. A continuous flow is a mapping F(z,r) of X X R onto X such
that F(x,r) is continuous; for each reR, F(x,r) is a homeomorphism
of X onto X and such that for all #eX and all r,,r,¢R, F(F(z,r,),7,)
= F(x,r,+7r,). A discrete flow is a homeomorphism 7 (X) = X and its
integral iterates.

The restricted embedding problem for continuous flows is that of
finding a continuous flow F(x,r) on X corresponding to a given X and
homeomorphism 7(X) = X such that F(x,1) = T(x) on X. In Section
2 of this paper we give the history of this problem.

Fine and Schweigert (jointky) [2] and Fort [5] solved the restricted
embedding problem on a connected subset of the line in 1955 (the results
of Fine and Schweigert seem to have been announced in 1950). They
have shown that if T is an order preserving homeomorphism of an interval
onto itself, then it is possible to embed 7' in a continuous flow on the
same space. It is easily seen that the condition of order preservation is
necessary. From this theorem one can easily secure the same theorem
for an arc. In Section 3 we outline an elementary constructive proof
of the embedding theorem for the line and in Sections 4 and 5, the details
of this proof are given.

2. The unrestricted embedding problem, that is, the embedding
problem that permits an enlargement of the space X is easily solved [4],
[6], [7] for any topological space X and self-homeomorphism 7. The
restricted problem, with which this paper is concerned, is only partially
solved. Hereafter, the results described are for the restricted problem.

In addition to the theorem cited above, Fort [5] has shown that,
if T is a homeomorphism of a half open interval (a, b] onto itself, T has
a continuous derivative on (a, b], T(x) > « for a < 2 < b, T'(x) > 0 for
a < x <band T’ is monotone non-increasing on (a, b], then there exists
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a unique flow F(x,r) on (a,b] such that F(r,1) = T and such that
F(x,r) is continuously differentiable on (a, b].

Although he did not state his conclusions in this setting, Hada-
mard [8], in reporting results of E. Jabotinsky, gave another approach
to the embedding problem on an interval.

Foland and the author [4] have shown that if T is an orientation
preserving self-homeomorphism of a circle X, then it is possible to embed
T in a continuous flow on the circle if, and only if, either (a) X contains
a fixed point under T, or (b) T is periodic on X, or (e¢) 7' is transitive on X.

Foland [3] has shown that if 7' is an almost periodic, orientation
preserving self-homeomorphism of a closed 2-cell, then T can be embedded
in a continuous flow on the 2-cell. Moreover, if 7' is almost periodic but
not periodic, then the embedding is unique.

Andrea [1] has given sufficient conditions that a fixed-point free
homeomorphism of the Euclidean plane can be embedded in a contin-
uous flow.

3. Results on iteration, of which there are many, often come close
to the embedding problem (which might be thought of as the problem
of continuous roots). In particular, the work of Michel [9], [10], is
relevant.

We will give an elementary and constructive proof of the embedding
theorem on a line with the help of a construction of Ward [11] for the
iteration of certain real functions. The real functions considered by Ward
are defined only on a ray a < ¢ < oo, they are not to have a fixed point,
their graphs lie above the graph of ¥y = # and Ward only considers the
positive iterates. It is because of these restrictions that the results of
Ward must be modified to apply in the present paper.

In this section we outline the proof of the theorem. The longer
details are reserved for later sections.

Let X be the Euclidean line and let 7(X) = X be an order pre-
serving homeomorphism. Let M denote the fixed points, if any, of T
on X. Since M is a closed set, X — M consists of combinations of one or
more of the following: the entire space X (in case M is null), bounded
open intervals, and open rays a <z < oo, —oo <z < a.

The homeomorphism 7' is strictly monotone increasing and leaves
M and each of its complementary sets invariant. The continuous flow
in which 7T is to be embedded will be fixed at each point of M. That is,
if ve M, F(x,r) = « for all reR.

LEMMA 1. If E(X) =X i8 an order preserving homeomorphism of
(A) the Euclidean line, (B) a closed interval of (C) a closed ray a < x < oo
or — oo < & < a ondo itself, then E can be embedded in a continuous flow
on X.
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The constructive proof of the three parts of this lemma will be
deferred to later sections.

LeEMMA 2. If F(x,r) i8 a continuous flow on X and H(X) =Y 1is
a homeomorphism, then HF (H-'(y), r) is a continuous flow on Y.

Proof. Let G(y,r) = HF(H-'(y),r). Clearly @ is continuous on
Y X R and for each reR, G(y, r) is a homeomorphism of Y onto Y. Con-
gider r,, r,eR. Then

G(G(y, 7)), 7)) = HF (H-(G(y, 1)), 7)) = HF (H'HF(H-'(y), 1), 75
= HF(H_I(i‘/)y 7'1‘1"'2) =G(y,r.+r3),

and the lemma is proved.

If, as in case (B) of Lemma 1, 7 is an order preserving homeomor-
phism of an interval [a, b] onto itself, then one may use Lemma 2
to reduce the proof of (B) to the case X is the interval [—1, 1].
Similarly, part (C) of Lemma 1 may be restricted to rays [—1, oco)
and (— oo, 1].

Once Lemma 1 is proved we have a constructive proof of the follow-
ing theorem of Fort, Fine and Schweigert:

THEOREM 1. If T i8 an order preserving homeomorphism of the Eucli-
dean line onto itself, then T can be embedded im a continuous flow on the
Euclidean line.

The required flow is secured by patching together the flows on
X — M guaranteed by Lemma 1.

The next two sections are devoted to a proof of Lemma 1.

4. Proof of case (A). We assume that X is the entire line, that
E(X) =X is an order preserving homeomorphism, hence is strictly
monotone increasing, and that F has no fixed points on X.

Either E(x) > « for all zeX or E(x) < « for all zeX. We first con-
sider the case E(x) > x for all x¢X. Since F is an onto mapping,

lim E(x) = — oo,

T—>—00
and since E(r) > x,
lim E(z) = oo.

T—00
It is clear that ¥ has an inverse, ¥_,, which is a monotone increasing
homeomorphism of X onto X. In general, for each positive integer n,
let E, denote the n iterations of F (E, will denote the identity). Then
E_,,n iterations of F_,, is the inverse of E,. Thus FE; is defined for all
integers ¢ and F;(F;(x)) = E;,;(») for all integers i,j. Since E(z) >«
for all 2eX, Ei(x) >z if ¢ =1, By(v) <z if 71 < —1.
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To embed F in a continuous flow we will construct a function ¢(x)
such that ¢ is a monotone increasing homeomorphism of X onto X such
that

1) p(+1) = E(p(2))
for all xeX. If ¢ satisfies (1), then it is easily seen that
p(@+n) = By(p(2))
for any integer » and any xeX. If ¢~ denotes the inverse of @, then
(2) En(2) = ¢(p~* () +n)

for any xeX and any integer n.
The continuous flow is now defined as

(3) F(z,r) = ¢lp~(2)+7)
for all xe X, reR. Clearly the function F(x,r) is continuous on X X R
and for each re¢R, F(x,r) is a homeomorphism.
F(F(w,1y), 7)) = ¢(p~! (P (w, r1))+72)

= (ol (p~ (@) +1:) + 7o)

= g(p~t(@) 747y

= F(x,r,+71,)
to verify that (3) defines a flow on X. Since F(x,1) = E, = E, by (2),
the flow is an embedding of F. It only remains to define ¢.

Let E(0) = a and let [y] denote, as usual, the largest integer not
greater than the real number y. Since a > 0,

0 = Ey(0) < a(z—[z]) < Ey(0) = a.
Define
p(x) = E[z] (a(m— [-’L‘]))

(i) ¢(x) satisfies (1). For consider,
¢(@+1) = B (a(@—[x]) = B(Ey(a(@—[])) = Blp(=)).

(i) @(x) ¢s monotone increasing. Consider &' > x. We will show that

p(z') > @(x).
Consider the case z' > [r]+1.

¢(@') = B (a(@’ —[2'])) > By (0),
since a(2’—[2']) > 0 and E, is monotone.
E[x'](O) = E[w’]—l(a) = E[x](a’)’
since [#']—1 > [«] and since E,(z) is monotone in n.
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Eiy(a) > E[z](“(m— [a’/'])) = ¢()

because a(r—[z]) < a. Thus ¢(2') > ¢(2).
Now, consider the case [z'] = [x]. In this case

p(@') = Egla(a’—[2'])) = Byla(@' —[2]) > By(a(z—[#])) = ¢().

(iii) ¢(x) ¢8 continuous. Consider any xeX. If x is not an integer,
let [#] = n. Then ¢(x) = Bu(a(x—mn)) near x. Thus ¢ is continuous for
any non-integral a.

Now, suppose z = n, an integer. Congider any & > 0.

limp(n+e¢) = im B, (a-¢e) = E,(0) = ¢(n)
e—0 8—0
and
limp(rn—e¢) = limEn_l(a(l—e)) = FE,_i(a) = ¢(n).
&0 e—>0

Thus, ¢(x) is continuous for all xeX.

(iv) @ has the entire space X as its range. We have seen that ¢ is
monotone increasing and continuous. With (iv) we will know that ¢ is
a homeomorphism of X onto X. As has been remarked, F, is monotone
in n for any fixed # = 2*. This follows from the fact that H(z*) > x*.
Further, since E,(z*) > E,_,(z*) it follows that

lim E, (z*) = oo.
Nn—00

To see this, consider the monotone increasing sequence {E,(z*)}.
If E,(z*) - p # oo, then E,,,(z*) — E(p) hence E(p) = p contrary to
E(p) > p. Similarly, one can show that
lim E,(z*) = — oo.
n——o0
Returning to the proof of (iv), we have {¢(n)} = {£,(0)}. But E,(0)
—> 4 oo a8 m — + oo, respectively, hence ¢ is unbounded above and
below to complete the proof of (iv).
Since ¢ is continuous and strictly monotone increasing and since
the entire real axis is its range, ¢ has an inverse, ¢—1, defined for all real z,
(v) We exhibit o= () and verify that for all real , o= (p(2)) = p(p~1())
= . Since Ey(0) - oo a8 k — oo and E;(0) > — oo a8 k - — oo, there
is a unique integer %k such that

(4) Ey(0) < v < Eryy(0) = Ey(a).
Then

1
(5) P (@) = = B_y(a)+.
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Observe that from (4) one has
0 < E_k(w) < .

Thus, from (5), one has k¥ = [¢~!(x)]. Since the inverse of ¢ is unique,
if we verify that ¢=! satisfies ¢~1(p(#)) = @(p~'(2)) =« for all real
we will have shown that ¢! of (5) is the inverse of ¢. Using (5) and the
definition of ¢, we have

(7)) = Eip-10y(a(p~ (@) — [p~* (2)])).
Since k¥ = [¢~(x)], this is

1

By (a, (E E_k(w)—l—k—k))

which simplifies to Ei(E_x(z)) = #. Thus ¢(p~'(x)) =z for all real =.
From the definition of ¢(x) one has

Ei(0) < ¢(2) < Eyyfa).
Then

1 1
7o (@) = = B_pap(@) + [0] = - B_iz (Bpm(a(z— [])) + []

1
=_o@—[z)t[s] ==

to show that ¢—'(p(z)) = .
It is now possible to give an explicit formulation for the continuous

flow:

1 1
F(2,7) = By(®@) = Bysnryar_yem (a(r+; B_i(0)— [r+- E_kw)])),

where k¥ is determined by equation (4).

At the beginning of this section we assumed FE(x) > « for all real .
In case E(x) < x for all real z, we consider ¢(x) = F_,(x), the inverse
of E. Then e(x) > for all real x, it is an order preserving homeomorphism
of the real line onto itself and has no fixed points. By the above arguments
e(r) can be embedded in a continuous flow G(z,r) on the real line so
that G(z,1) = e(x). Then the given homeomorphism F(x) satisfies the
equation G(x, —1) = E(z) since G(z,t,) is the inverse of G(x, —1t;) in
a continuous flow. The proof of (A) is completed by the following obser-
vation.

(vi) If G(z, r) is a continuous flow on X, then so is F(x,r) = G(», —r).
One need only verify that

F(F(w; rl)arz) = G(G(“"’ —74), —7'2) =G(x, —1, —15) = F(v,r,+71,).
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5. Case (B) of Lemma 1. This case, and case (C), are similar to (A).
We will only point out the changes needed in Section 4 to establish (B).

We first assume F(x) >« for all ze(—1,1), F(—1) = —1 and
E(1) = 1. As before, define

p(x) = Em(a(w— [a;]))
for all real z. Now,

—1<a<l and —-1<gp(z)<l.

Again, equation (1) is satisfied for all real z since |p(x)| < 1 for all
real x. It is easy to show that ¢ is monotone increasing and continuous

for all real .
E, is monotone increasing in n for a fixed x*<(—1,1) and one has

limE,(z*) =1, lmE,(z*) = —1.
n—>00 —00

Thus {p(n)} = {£,(0)} > +1 a8 n - 4 oo and ¢ is a homeomor-
phism of the reals onto the open interval (—1, 1).

Equation (4) gives a unique k(z) for each xe(—1,1) with which
one uses () to define ¢~1(x). The equation q>—1(<p(w)) = g is valid for
all real z and the equation <p(<p-1(a;)) = g is valid for all xe¢(—1,1). The
proof is completed as in the previous section.

The modifications necessary to adapt (B) to (C) are obvious. In
particular ¢ becomes a homeomorphism from the reals to an open ray.
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