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A POISSON KERNEL ON HEISENBERG TYPE
NILPOTENT GROUPS

BY

EWA DAMEK (WROCLAW)

The classical nilpotent Lie groups which appear in the Iwasawa decom-
position of semisimple Lie groups are embedded in a larger class of so-called
groups of type H (see [8] and [12]). This class has been introduced by
Kaplan in [7] and has recently attracted considerable attention (cf., e.g.,, [1],
[2], [12], and [13]). If such a group N is extended by the one-parameter
group of dilations A4, the group S = NA may be regarded as an analogy of a
rank one symmetric space, N being the boundary; cf. [2], where the
Riemannian structure of S which generalizes that of the symmetric space has
been investigated.

J. Cygan has proposed to study the harmonic functions on § with
respect to the Laplace-Beltrami operator on S and has written a formula for
what should be the Poisson kernel P,, ae A. In this paper we verify that in
fact this formula is correct. We prove that the function P(n, a) = P,(n) is
harmonic on S, and consequently so is the function ¢ xP,(n) for every
@pel?(N), 1 < p< . We also show that

lime*P,(n) = ¢@(n) ae.
a—0

The author is grateful to Jacek Cygan, Jolanta Dlugosz, Pawel Glowac-
ki, and Andrzej Hulanicki for helpful suggestions and remarks concerning
this paper.

1. Introduction. Let n be a nilpotent 2-step algebra with an inner
product. Denote by V the orthogonal complement to its center Z. Then, for
every ve V, ad, maps Vinto Z and we have the orthogonal decomposition of
V given by

V=Kerad, ® D (v).
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n is said to be of Heisenberg type (shortly, of type H) if for every unit vector
ve V the mapping ad,: D(v) —» Z is a surjective isometry.

Every Lie algebra of type H arises as follows [7]. Let U and V be vector
spaces with positive definite quadratic forms |-|2. By definition, a composition
of these quadratic forms is a bilinear map u: U x V— V which satisfies

lu(u, o)) = lullv], ueU,vel,
and for a u,
U(ug, v) =v, vel.

Let Z be the orthogonal complement to Ru, and let n: U — Z be the
orthogonal projection. Define a bilinear map @: VxV— U by

Cu, @(v, v')) = {u(u, v), V).
Then nd is skew-symmetric [7], and n = VxZ with the bracket
[(v, 2), (v, 2] = (0, nd (v, V'),
and the inner product
v, 2), (v, 2)) = (v, V' )+ <z, 2")

is an algebra of type H.

Let N be a connected and simple connected Lie group whose Lie
algebra is n. If we identify N with n by the exponential map, the multiplica-
tion in N is given by

(v, 2)(v, 2) = (v+V, z+ 2+ 37D (v, V)).
We denote by A the multiplicative group of R*. Let
(1 S=NA

be a semi-direct product of N and A, A acting on N as dilations d,(v, =
= (av, a®>z). Thus we identify S with VxZ xR* and

(v, z, a)(v', 2, @) = (v+av, z+a* 2’ +3and (v, V), ad).
S has a Lie algebra s = n@® R with the bracket
[(v, z, loga), (v, Z/, loga)]
= ((loga) v'—(logd’) v, 2(loga)z'—2(loga)z + n® (v, V'), 0).
In the Lie algebra s we select an inner product
v, z, loga), (v, 2/, loga’) s = <v, v'>+ <z, z’>+4(log a)(log a’)

and the left-invariant metric it defines we denote also by (-, - )s.
The above construction includes the noncompact rank one symmetric
spaces as particular cases, which of course has been the reason to study
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groups of type H (cf. [9]). Somewhat more about this inclusion is in [2].

Let M be a rank one noncompact symmetric space. The group of
isometries of M is semisimple. Denote by G its connected component. Let g
be the Lie algebra of G, B the Killing form of g, 8 the Cartan involution,
and g=1®p the Cartan decomposition [15]. Denote by a a maximal
Abelian subalgebra of p, which by assumption is one-dimensional. The
positive part of the corresponding system of restricted roots is equal to
1%, 2] or (x} for a root x. Then

n=q ® g™

is a nilpotent type H subalgebra of g with the center g**. For the Iwasawa
decomposition

g=nd@adt
we write N, A, and K for the corresponding subgroups of G. The map
NxAxK>3(n,a, k)— nakeG

is a difffomorphism and S = NA is a closed solvable subgroup of G
diffeomorphic to M.

The Poisson kernel for M in terms of NA is a family P, of convolution
kernels on N (see [5]):

ce?

[(e*+(4h) ™ IX,1%)2 +b7 11X 5 ]

P,(n) =

where
n= exp(Xa+X2a)a Xae .qaa XZae gZa’

e=e  |X|? = —B(X, 0X),

d =dim ¢+2dimg**, b =dim §+4dim g%,
and c¢ is such that

[Pun) = 1.

N

Now, if N is a group of type H and S is given by (1), then the inner
product

v, z, loga), (v, Z, log @) Y = b(<v, v )+ {z, ')+ 2(log a) (log a'))
on S corresponds to the product —B(-, 6-) (cf, eg. [2]). So following a

suggestion of J. Cygan we write

ca’

@+ + =71

P,(n)
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where n = exp(v, z), d = dim V+2dim Z, and c is such that | P,(n) = 1. The
N
conjecture that P,(n) is the Poisson kernel for S can be also somewhat

metamathematically supported by the fact that the fundamental solution for
the sublaplacian on the nilpotent groups, which appear in the Iwasawa
decomposition of the rank one symmetric spaces, has been rewritten for the
groups of type H in a similar way and in this shape is the fundamental
solution for the corresponding sublaplacian (see [7] and [9]).

2. The Laplace-Beltrami operator. Let {¢}, i=1,...,dimV, and {e},
r=dimV+1, ..., dim V+dim Z, be orthonormal bases in V and in Z, respect-
ively, and e, a vector in R such that {ey, e> =4-{e;, ¢,, €0} is a-{, *Ds-
orthonormal basis of s. Denote by E; the left-invariant vector field on §
corresponding to e; for =0, 1, ..., dimV+dimZ.

THeEOREM 2.1. The Laplace-Beltrami operator A is of the form

d
A =ZE§_§E0.
B

Proof. The proof is based on the following facts:

1. If V is a Riemannian connection on M, then (div X), is equal to the
trace of TM3w—V, XeT,M (cf. [4] and [10]).

2. We have 4g = div(gradg) for ge C*(M).

3. The Riemannian connection on § expressed in terms of Ej (cf. [2]) 1s
given by

VE,- E; = %Eo, VE,Er = E,, VEO E, =0.

Now

div(gradg) = ), (Ej, Vg,(gradg))s
B

= ;E, (Eg,(grad g))s —% (Veg Ep, (grad g) s

d d
= ZE39—5 CE,, (grad g))s = ZEﬁy—EEog-
s 7

THEOREM 2.2. We have AP = 0.
Proof. We write h = a>+%|v)? and f = h®>+|z|>. Then P =a’ f %% To
calculate E;g for ge C*(S) we use the formula

d
Eﬂg(v’ Z, a) = 'd_tg((va Z, a)(exptEﬂ))|r=0‘
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Hence by a simple calculation we obtain
Eoh = a?, E,h=0, E;h = av,
EOf = 2ha2, Erf = 202'2,, Elf = a(hvi+ (,u(z, U), ei>)9

where
v=>Yve, z=)2ze€.
Moreover,
Y (Ep f)? = 4h* a* +4a*|z|* + a® h* [v]* +
B
+2ahY v, u(z, v), ey +a2 Y Culz, v), €)%
But
Zvi <ﬂ(zs U)a ei> = <ﬂ(Z, U), U> = <Z, 7t¢(v, U)> = 0
and

Y Cule, o), ed? = G, o = 12?0l
Hence, finally,
Z(E,,f)2 = 4ha’f.
B
On the other hand, it is easy to see that
E?|z|* = ja®|n® (v, &)
and
412> =2(dimZ)a* +3a) |nP (v, €))?
= 2(dimZ)a* +3a* Y. (T <ule, v), &)?)
=2(dimZ)a*+3a*) |u(e,, v)|* = 2(dim Z) a* h,

_l—d
4

4h =a*(1+3dimV—-31d), Af = 4ha®.

Av]*> =2(dimV)a?, A4da a, da*=0,

Finally we have
AP = & Af 424 2Y (Ega®)(Eg f %)
B

=a Af “92 4+ 2(Eo a®) (E, f ~?)
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d d -dj2-2 2
= ((=5)(=51 e p e
+(—g)f“’”“Af+d(—g)f“”2"Eof>

= a"(—g)f“”z" (<—§_ l>4hr12+4ha§+2dhaz) = 0.

2
3. Fatou’s theorem. We define a gauge by

1 1/4
(v, 2)ll = (E'”"*""'z) :

which is homogeneous of degree 1, i.e., for dilations §,

104 (v, 2)IIl = all(v, 2)

(see [3]). N with ||-|]| 1s a space of hofnogeneous type. Moreover, ||| is
subadditive, 1.e.,

Inn |l <Hlnll+1lmll,  n,nyeN

(see [1]). We have the following estimate for P,(n):

ca’

@ P = G

Consequently, P,(n)e [’(N), 1 < p < x. Moreover, for every left-invariant
differential operator é¢ on N we have

3) oP,eIP(N), 1<p<x.

Indeed, it can be easily seen that (Eg, - E‘,kf)f‘1 is bounded, where as
above f = (a*+4|v|?)*+|z|%. It follows from (3) that for every ¢ e [*(N) and
every left-invariant differential operator ¢ we have
@ *P,) = @ *CP,.
Now we are ready to prove an analogy of the classical Fatou’s theorem (cf.
[11] and [16]).
THEOREM 3.1. If @e IP(N), then
lim g x P,(n) = @(n) a.e.
a—0
Proof. The proof goes by a routine way. First we show
(a) If e C.(N), then

limg* P,(n) = ¢(n).

a—0
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Then we prove
(b) The operator T defined by
T (n) = sup|e * P,(n)|

a>0

is of weak type (1, 1) (see [14]).

From (a) and (b) we infer that Theorem 3.1 holds for ¢ e L' (N) (cf., e.g.
[14], p. 60).

Since

P, =a *P,(6,_,(n)) and [P (mdn=1,

P,(n) is an approximate identity and (a) follows.

To prove (b), let B,(n) = {n;: |Inn;'|| <r). Denote by m the standard
Lebesgue measure on N. Since N with ||-|| is a space of homogeneous type,
the operator which assigns to each function ¢ e L'(N) its maximal function

*(n) = ———— dn, = —_— “Hid
o*(n) fl:gm(B,(n))B,"(.n,l(p(nl)l n, fggm(Br(O))B;fml(p(nnl ) dn,

is of weak type (1, 1).
Now it is sufficient to show that there is a constant D such that for
every @eL'(N)
T (n) < D o*(n).
Notice that

d
ca d

PO S G S
and if [|n]| > a, then

ca’ cal|n||4~1
~
[a* +(|n||*]*? |}

By a standard method [6], since m(B,(0)) = r*m(B(0)), we have
|[ @ (nny ) P,(ny)dn,|
N

-d-1

= cal|n||

< [ lemni Y Py(n)dny + 3, ) ¢ (nny ")] P,(ny)dn,

ling Il <a k=1 2k=1a<||ny|| <2ka

<ca™ [ le(mniYdn+ ) ca(? a7t [ |o(nng ) dn,
Iyl <a k=1 B (0

<C<p*(n)+C'2"“(§ 274 ¢*(n)
k=1

=(c+c-2¢* 1) p*(n).
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To prove Theorem 3.1 for ¢ in IP(N), p > 1, we write for every r >0

o =y,+¢,,

where ,e ! and ¢, is bounded and vanishes in the ball B,(0). Thus for
ne B,,(0) we have

@ * Po(n) =Y, + Po(n)+, % Po(n)
= '/’r*Pa(n)+ I ér(nnl_ l) Pa(nl)dnl :

llmq Il >r/2

Since by (2) we get

hml j ér(nni—l) Pa(nl)dnll < lim Hér”Lao I Pa(nl)dnl = 0,

a=0 |iny |l >r/2 a0 llny Il >r/2

we have

limo#*P,(n) =¢(n) ae. for neB,;(0),

a—0

and since r is arbitrary, the equality holds for all n in N.
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