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Capel and Strother ([3], p. 42) have shown that ¢f a compact Hausdorff
space i8 provided with a closed partial order, the function which maps each
closed set with least element into its least element is continuous (). Thig
theorem has a long history (Michael [8], theorem 1.9, Eilenberg [5],
proofs of theorems 5 and 14, and probably others), and several appli-
cations to selections ([8], [6], proposition 3.1.2), fixed points ([3]), and
the factoring of maps ([5]).

It is our purpose to set this result in its most natural context,
remove the superfluous hypotheses, simplify the proof, and provide
such a converse as is available.

If R « XXX is any relation on a set X and 4 < X, « is said to
be the least element of A (with respect to the relation R) iff

(i) wed, .

(ii) if yeA, then xRy,
and

(iii) if yeA and yRz, then y = .

Now suppose that X is provided with a Hausdorff topology, that X~
is the family of all compact subsets of X having a least element, and
that f is the function that maps each K ¢2' into its least element f(K)eX.
2 and f determine a relation R’ on X defined by

(iv) xR’y iff for some KX,z = f(K) and yeK.

Clearly R’ = R and, when R is antisymmetric, they are equal(!). It is
also easy to see that B = R’ implies that f(X) = RX = {«x | Ry for
some yeX}.

The relationship between R, R’, 2' and f is exhibited by the following

THEOREM. (a) When R is closed, X is closed and f is continuous (2).

* The authors thankfully acknowledge the support of NSF grants GP 2080
and GP 3623.

() See Added in proof, p. 221.

(2) i.e., continuous with respect to the Vietoris topology (see [8]).
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(b) When X ts closed, f is proper (3) and R = R’, then R is closed(}).

Some remarks are in order before proceeding to the proof. (a) shows
that the hypotheses of order (i.e., transitivity) on R and of compactness
on X are extraneous, and also gives us some new information about X.

(b) provides a converse of (a) in the compact case since f will be
proper when X is compact, X is closed, and f is continuous.

Some condition such as R = R’ is needed in (b) since X' and f could
be empty, and hence closed, without R being closed. But R = R’ is not
a necessary condition for R to be closed, since 2" and f can also be empty
with R closed.

It is tempting to try to strengthen (a) into a converse of (b) by showing
that f is proper when R is closed. Unfortunately, this is not in general
true when X is not compact as an example will show. Let X be the non-
negative reals and R={(z,y) |z,yeX and z =y} v {(z,y) | ¢, yeX and
y=o+1/x}. Let & = {AdeX| A ~[1,00)# O} Then @ is a closed
subset of X, but 0eClf(P)\ f(D).

Proof of the theorem. (a) Suppose {K,} is a net in X conver-
ging to a compact subset K, of X. If the net {f(K,)} fails to converge
to any point of K, it is eventually outside of some open neighborhood
U of K,. But this contradicts the fact that {K,} is eventuallyin{K < U | K
is compact}. Hence suppose {f(K.)} — ayeK,. If re¢K, and (ay, x)¢R,
there are disjoint open neighborhoods U’ and V' of a, and = such that
(U'XV')~A R=6@. But K, is compact and disjoint from V’, and so
eventually K, ~ V' # @ which is a contradiction. Hence K,eX and
f(K,) = a,, and X is closed.

To complete the proof of (a) note that (i), (ii) and (iii) may be re-
phrased as

(i)' f(4)e4,

(i) {f(4)} x4 < R
and

(iid) [(AN{f(A}) x {f(4)}] ~ B = O.

For any KeX (iii) implies that (K\{f(K)})x{f(K)} = (X xX)\R
which is open in X x X. If f(K) belongs to an open set W of X, then

K x{f(K)} = [[E\{f(K)}) x {f(K)}] v {{f(X), f(K))}
c (X XXN\R]u[WXxW]
which is open in X x X. Since K X {f(K)} is compact, there are open
neighborhoods U and V in X such that
Kx{f(K)} c UxV c (X xXX)\R]vw [WxW].

(3) i.e.,, f is closed, continuous, and for each weX, f-!(x) is compact
(see [2]).



THE LEAST ELEMENT MAP 219

Then KeAd = {AeX| A < U and A ~ V # @} which is open in 2X. If
Bed, by (ii)

{(fBIXBAV)cRA(UXV)cWXW

and so f(B) =« W. Thus f is continuous.

(b) Let & = {(A,b) |bedel}. Then O < 2XX and if (4,, by)
e(Zx X)\ @, there are disjoint open mneighborhoods U and V of 4,
and b,. Let Q = {Ae2 | A < U}. Then 2 x V is a neighborhood of (4,, b,)
in 2 x X disjoint from @ and, hence @ is closed. Hence R = (f X idx)(®)
is closed (2).

A semigroup is a non-void Hausdorff space together with a continuous
associative multiplication, denoted by juxtaposition. (Reference may
be made to the excellent expository dissertation of Paalman-de Miranda
[10], and, for discrete semigroups, to the books of Clifford-Preston [4]
and Ljapin [7]). For simplicity of exposition we assume in the following
example that § is a compact semigroup.

ExAmPLE. Define a subset B of 8§ xS by

R ={(x,y) | v =2y = yx}

so that R is closed, antisymmetric, and transitive. The closed set 4 ¢ZX
iff there is an element 2 in 4 such that

2 =2z4 = Az,

that is to say, A contains a zero. Since 8 is compact, it contains an ele-
ment e such that e? = ¢ and thus, at least, {e}¢2. Indeed, such elements
constitute precisely the values of f and these are also the one-element
members of 2. If 22 = 2z, then

{212 =20 = we}el

and also is a maximal set in 2" as well as a subsemigroup. If it is assumed
that 8 is commutative and idempotent (2 = x for all x¢S§), then Example
1 of [3] is herein subsumed, R becomes reflexive and, indeed, R is also
a subsemigroup of S x 8.

Maintaining all of the above hypotheses on S, supposing that § is
contained in a space X and that there is a retraction r of X onto 8§, then
the multiplication may be extended to all of X by the rule

xy = r(@)r(y).

With this multiplication R is also extended to X X X and there obtains
a situation which includes Example 2 of [3].
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It may be noted that Example 3 of [3] is a special case of a very
general selection theorem of Michael ([9], Theorem 8.1).

Conditions (i)', (ii)’, (iii)" (of the proof of the previous theorem)
can be supplemented in order to insure that R contains a partial
order (4).

THEOREM. R contains a partial order iff there is a family X and
a surjective f: X' — X satisfying for all A X, (i), (ii)’, (ili)’, and

(v) if f(B)edA, then A w BelZ.
If the conditions are satisfied, R’ is the desired partial'order.

Since f is surjective, (i)’ implies that R’ is reflexive. If aR’'b and bR'a,
since R' <« R, a = b. (Indeed aRb and a # b imply by (iii)’, not bRa.)
IfaR'band bR'c, supposea = f(A4),b = f(B)eA andceB. By (v), 4 v BelZ.
If d =f(4 v B)ed by the antisymmetry just proved, a = d. If not,
deB and thus d = b. But this again implies ¢« = d and so aR'c.

Conversely, if R contains a partial order P, let X' be those subsets
containing their P-infimum. f is surjective since 2 contains all singletons,
and the conditions are easily verified.

Of course much smaller choices of 2 may be made. For example,
the collection of all doubletons {a, b}, where aPb is canonically small.

Ralph DeMarr points out that partial orders may be axiomatized
by reference to surjective f: 2'— X alone using (i)’ and

(v)' if f(B)eAeZ, then A U BeX
and f(4) = f(4 v B).

The order is defined as R’ is.

A subset 4 of X is an R-chain provided that A x4 <« R o R~! and
the relation @ on X is chain-equivalent to R if and only if @ v @1
= R v R~!. From the Hausdorff Maximality Principle it follows that
any R-chain is contained in a maximal such. Also, Bednarek [1] has
shown that if @ is a reflexive and transitive relation on X, then any maxi-
mal partial order on X which is contained in @ is chain-equivalent to Q.
Again by the maximality principle, any partial order on X which is con-
tained in @ is also contained in a maximal such.

P 555. If R is antisymmetric and closed, and if X is compact, then
each member of X' is contained in a maximal member. Is the collection
of maximal members closed? Is it closed if, in addition, the second
projection restricted to R is an open function?

P 556. If R is a closed partial order on X and if X is compact, is
the collection of maximal R-chains closed?

(%) Note that these considerations do not involve Topology.
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P 557. If X is compact and if R is closed, reflexive and transitive,
under what conditions will there exist a closed partial order contained
in R which is chain-equivalent to R?

Added in proof. R must be taken to be reflexive. The authors
are indebted to A. R. Bednarek for this observation.
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